目录
- NDT匹配算法简介
- 参数详解
- 2.1 ndt_resolution
- 2.2 ndt_step_size
- 2.3 ndt_transformation_epsilon
- 2.4 ndt_maximum_iterations
- 参数调优建议
1. NDT匹配算法简介
正态分布变换(NDT)是点云配准中的经典算法,其核心思想是将目标点云划分为规则网格,用多维高斯分布表征每个网格内的点集分布。待配准点云通过优化变换参数,使其与目标点云的概率分布达到最佳匹配。上述参数直接影响NDT算法的精度、速度和稳定性。
2. 参数详解
2.1 ndt_resolution=0.2
- 物理意义:网格划分的尺寸(单位:米),决定了高斯分布的空间粒度
- 影响:
- 较大值(如1.0):计算速度快,但细节丢失严重,适用于粗配准或大场景
- 较小值(如0.05):保留更多细节,精度高,但计算开销大,易陷入局部最优