一群猴子,编号是1,2,3 …m,这群猴子(m个)按照1-m的顺序围坐一圈。从第1只开始数,每数到第n个,该猴子就要离开此圈,这样依次下来,直到圈中只剩下最后一只猴子,则该猴子为大王。输入m和n,输出为大王的猴子是几号。
提示:
(1)链表解法:可以用一个循环单链表来表示这一群猴子。表示结点的结构体中有两个成员:一个保存猴子的编号,一个为指向下一个人的指针,编号为m的结点再指向编号为1的结点,以此构成环形的链。当数到第n个时,该结点被删除,继续数,直到只有一个结点。
(2)使用结构数组来表示循环链:结构体中设一个成员表示对应的猴子是否已经被淘汰。从第一个人未被淘汰的数起,每数到n时,将结构中的标记改为0,表示这只猴子已被淘汰。当数到数组中第m个元素后,重新从第一个数起,这样循环计数直到有m-1被淘汰。
(3)该问题为计算机科学中的经典问题,很多实际的问题可以抽象到这种模型上来。感兴趣的同学请搜索“约瑟夫问题”。
#include <iostream>
using namespace std;
struct Monkey
{
int num;
Monkey *next;
};
int main()
{
int i,j,m,n,king;
Monkey *head,*p1,*p2;
cin>>m>>n;
if(n==1)
king=m;
else
{
p1=p2=new Monkey;
head=p1;
p1->num=1;
for(i=1;i<m;i++)
{
p1=new Monkey;
p1->num=i+1;
p2->next=p1;
p2=p1;
}
p2->next=head;//生成环形链表
p1=head;
for(i=1;i<m;i++)//共删m-1次
{
for(j=1;j<n-1;j++)
{
p1=p1->next;//p1为待删节点前驱
}
p2=p1->next;
cout<<i<<"lun"<<p2->num<<"diu"<<endl;
p1->next=p2->next;
p1=p2->next;//p1成为新起始节点,p2没被删,其指针还在
delete p2;
}
king=p1->num;
delete p1;
}
cout<<king<<endl;
return 0;
}
结果
心得
分好逻辑块~此为环形链表,画环形图更直观~