15、搜索算法:从理论到实践

搜索算法:从理论到实践

在解决问题时,有时我们需要对所有可能的情况进行逐一检查,这种方法被称为穷举搜索。虽然穷举搜索在某些情况下可能效率较低,但对于一些没有已知多项式时间算法的问题,它仍然是一种可行的解决方案。本文将介绍几种常见的搜索算法,包括深度优先搜索(DFS)、广度优先搜索(BFS),并通过一些经典的谜题来展示它们的应用。

1. 隐式搜索与 n 皇后问题

1.1 隐式搜索模式

隐式搜索的基本模式可以表示为 solutions = filter good · candidates ,其中 candidates 函数根据给定数据生成可能的候选列表, filter 操作则从这些候选中提取出“好”的候选。如果只需要找到一个解,可以使用 solution = head · solutions 。在惰性求值的情况下,这种方法不会损失效率,因为只需要计算 solutions 的第一个元素。

1.2 n 皇后问题

n 皇后问题是一个经典的谜题,要求在 n×n 的棋盘上放置 n 个皇后,使得任意两个皇后都不能相互攻击。这个问题可以通过隐式搜索来解决。

初始解法

最初的解法是生成 1 到 n 的所有排列,然后过滤掉那些不满足皇后安全条件的排列。代码如下:

safe::[Nat] -> Bool
safe qs = check (zip [1..] qs)
check 
【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
内容概要:本文详细介绍了一个基于Java与Vue技术栈的向量数据库语义检索与相似文档查重系统的设计与实现。系统通过集成BERT等深度学习模型将文本转化为高维语义向量,利用Milvus等向量数据库实现高效存储与近似最近邻检索,结合前后端分离架构完成从文档上传、向量化处理、查重分析到结果可视化的完整流程。项目涵盖需求分析、系统架构设计、数据库建模、API接口规范、前后端代码实现及部署运维等多个方面,并提供了完整的代码示例和模块说明,支持多格式文档解析、智能分段、自适应查重阈值、高亮比对报告生成等功能,具备高扩展性、安全性和多场景适用能力。; 适合人群:具备一定Java和Vue开发基础的软件工程师、系统架构师以及从事自然语言处理、知识管理、内容安全等相关领域的技术人员,尤其适合高校、科研机构、企业IT部门中参与智能文档管理系统开发的专业人员。; 使用场景及目标:①应用于学术论文查重、企业知识产权保护、网络内容监控、政务档案管理等需要高精度语义比对的场景;②实现深层语义理解下的文档查重,解决传统关键词匹配无法识别语义改写的问题;③构建可扩展、高可用的智能语义检索平台,服务于多行业数字化转型需求。; 阅读建议:建议读者结合提供的完整代码结构与数据库设计进行实践操作,重点关注文本向量化、向量数据库集成、前后端协同逻辑及安全权限控制等核心模块。在学习过程中应逐步部署运行系统,调试关键接口,深入理解语义检索与查重机制的工作原理,并可根据实际业务需求进行功能扩展与模型优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值