- 博客(72)
- 收藏
- 关注
原创 哥本哈士奇(aspnetx)
除了数据库,笔者更关注的就是APEX,现在它也摇身一变成为 APEX AI Application Generator,之前分享过 APEX实战第5篇:利用APEX程序直观体验向量近似检索能力,只是用到近似检索能力,后面也计划按下面演讲中的例子,做一个自然语言直接对APEX中原生的交互式报表进行提问的Demo。至于为何要找相近的?26ai本质是23.26,但是23ai这个名字不再使用了,也不存在23ai升级到26ai的说法,如果你之前用的23ai,只是打个10月份的补丁,就可以无缝变成26ai。
2025-11-18 22:30:36
380
原创 [你必须知道的.NET]第三十五回,判断dll是debug还是release,这是个问题
熟悉 CAP 的同学可能了解到,CAP提供了一个 UseDispatchingPerGroup 配置项用来为消费者组启用独立的调度器,独立的调度器意味着其具有独立的消费管道,这样消费者组之间就不会互相影响(默认如果不开启此配置项会将不同组的消息放置到同一管道来调度并串行执行),从而可以实现如某些消费者执行非常长的时间也不会卡住另外一些执行时间比较短消费者,这样也就做到了独立执行。无论如何,我们在这个版本优化了这一行为,现在会分批次来将任务提交到线程池,在上一批次执行完成后才会放置下一批次的任务。
2025-11-18 22:27:18
283
原创 关于程序员在岁、岁之后怎么办的新思考
paraformer-large-zh-yue-en-timestamp-onnx-offline-dengcunqin-20240805 非流式 中文、粤语、英文 否 是 https://www.modelscope.cn/models/manyeyes/paraformer-large-zh-yue-en-timestamp-onnx-offline-dengcunqin-20240805。该项目是一个控制台/桌面端示例项目,主要用于展示语音识别的基础功能,像离线转写、实时识别等操作。
2025-11-18 22:23:11
366
原创 如何让普通变量也支持事务回滚?
在逻辑回归中,我们并不强调初始化内容,这是因为整个网络只有一层线性组合与其相关的参数,我们的所有操作都是在更新这一组参数,因此,把这组参数初始化成什么样,并不算一个需要思考的地方,因为这组参数最终都会随着更新让损失达到最低点。在这周的例子里,我们设置神经网络隐藏层的神经元为四个,输出层的神经元再综合四个神经元的输出结果计算最终的输出,那隐藏层神经元的数量增加后,又是如何发挥正向的作用呢?所有人从同一个山顶出发(全零初始化) 大家看到的坡度一样,朝同一个方向走,走的路径重叠,只等于一个人找路,效率极低。
2025-11-18 22:18:48
237
原创 把委托说透():深入理解委托
不不不,没有的事,你又忘了,FromExpression 只是转换为表达式树,并不会真的调用它。哦,说了一大堆,还没说这个方法到底有啥毛用。实际上,EF Core 并不会真正调用方法,只是通过生成表达式树 + 反射出方法名,然后再找到与方法名对应的数据库中的函数罢了。不能调用,不能调用,不能调用!1、访问 context.GetAllBooks() ,这时候,GetAllBooks 方法确实被调用了,是你的代码调用的,不是EF调用;可是,你也发现了,这TM太麻烦了,为了表值函数映射,我要封装两个方法成员。
2025-11-17 21:14:13
338
原创 让VS崩溃的WinForm用户控件
若总纹理内存超限,自动降低非关键纹理的 Mip 层级(如将 MipLevelideal 强制偏移 +1)。每个导入的纹理(如 2048x2048 的 PNG)在 Unity 中生成独立的 Mipmap 金字塔(14 个层级)。:勾选 Generate Mip Maps 和 Streaming Mipmaps,设置 Mip Map Priority(优先级越高越早加载)。Unity 的 Mipmap Streaming 系统仅加载当前需要的层级(如 Mip 4-6),其他层级保留在磁盘或按需异步加载。
2025-11-17 21:10:00
360
原创 Asp.Net 网站优化系列 数据库优化 分字诀 分表(纵向拆分,横向分区)
已删除: $ai_patrickLiu_dir" || echo "?启动脚本: $(ls -ld "/usr/bin/patrickLiuFileBrowser" 2>/dev/null | awk '{print $1 " " $3 ":" $4}' || echo "未知")"AIBroker 目录: $(ls -ld "$AIBROKER_DIR" 2>/dev/null | awk '{print $1 " " $3 ":" $4}' || echo "未知")"权限设置失败,继续尝试删除"
2025-11-17 21:05:46
459
原创 我眼中的Visual Studio 架构工具
本文的主要内容是将 EasySQLite 项目解决方案文件格式从 .sln 格式升级为更简洁的 .slnx 格式。现在 .NET CLI 已更新以处理 .slnx 文件格式,使用 dotnet sln migrate 命令将传统的 .sln 解决方案文件迁移到新的 .slnx 解决方案文件格式。注意假如 Visual Studio 2022 的版本太低可能不支持将.sln 格式另存为新的.slnx 格式!接下来我们分享 2 种将现有项目的 .sln 文件格式转换为新的 .slnx 文件格式的方法。
2025-11-17 21:01:16
510
原创 WP有约(三):课堂重点
琢肯信每传统的目标检测算法已经非常成熟,例如 YOLO 系列、DETR、Faster R-CNN 等,它们主要处理的是规则的二维图像数据。在图像中,像素按照规则网格排列,不同网格之间排列的不同会导致图像结果完全不同,这种有序性非常适合卷积神经网络进行特征提取。然而,3D 的点云完全不同。它是一组离散、无序且稀疏分布的空间点,没有固定的拓扑结构和排列顺序,也就是说点与点之间的邻居关系不是固定的。想象一下,你有14个乒乓球,他们随机地散落在桌子上,但共同组成了一个雨伞的形状。image-202508190234
2025-11-17 20:56:19
801
原创 T-SQL查询进阶--详解公用表表达式(CTE)
chijing我靠误会大了,服务起不来wozhenfule经过博主多次测试后发现是最开始防火墙没有关闭的原因,然后在重装在安装之前找到 控制面板》系统和安全》Windows Defender 防火墙》启用或关闭Windows Defender 防火墙》关闭Windows Defender 防火墙(温馨提示关闭所有的防火墙),如下步骤图。然后再去运行Sql Server安装程序就好了,最后没有再提示“服务没有及时响应启动或控制请求”了,MSSQLSERVER服务是正常启动的了,如图。
2025-11-16 15:38:28
160
原创 使用分页方式读取超大文件的性能试验
转java没有一个好用的orm怎么办,我之前用sqlsugar的现在有没有sqlsugar-java,我之前用efcore的现在是否有efcore-java,我之前是freesql的粉丝转java后有没有freesql-java?user.bankCards().where(c -> c.type().eq("储蓄卡")).count().gt(4L);user.bankCards().where(c -> c.type().eq("储蓄卡")).count().gt(4L);//用户至少有三张储蓄卡。
2025-11-16 15:34:37
496
原创 经验分享:CSS浮动(float,clear)通俗讲解
本文介绍了夜莺的定位、架构、单进程还是多进程的抉择、高可用设计,如果你们公司只有一个机房或者有多个机房但是机房之间有很好的网络专线,那就部署一套夜莺就可以了,如果有多个机房,但是机房之间的网络链路很差,就需要考虑夜莺的边缘机房架构模式,咱们下一节详细介绍。需要考虑 sharding,比如有两个实例,有 1000 条规则,那每个实例要处理 500 条规则,不能重复执行,而且要均匀分配,如果某个实例挂了,剩下的实例要能承接原本宕机的实例负责的那些规则。如果是公司内部的系统,我更倾向于做成两个进程,方便维护。
2025-11-16 15:30:30
314
原创 异步编程 In .NET
指示:- 回顾现有剧本和之前尝试的反思- 仅识别当前剧本中缺少的新见解、策略或错误- 避免重复 - 如果已经存在类似的建议,只添加与现有剧本完美补充的新内容- 不要重新生成整个剧本 - 只提供所需的补充- 注重质量而非数量 - 一个专注、组织良好的剧本比一个详尽无遗的剧本更好- 将您的响应格式化为具有特定部分的纯 JSON 对象- 对于任何操作,如果没有新内容要添加,则在操作字段中返回空列表- 简洁明了 - 每个补充都应该是可操作的。核心需求是 “快速响应”,不需要历史信息干扰,避免冗余计算。
2025-11-16 15:26:24
517
原创 Cassandra简介
先来看下kcontext()的代码。侵泊倜奶随着处理器主频的越来越高,每次读写一次磁盘要耗费很多个时钟周期来等待磁盘操作的完成,与其傻傻等待,在这等待的过程中我们可以做更多有意义的事情,如当第一个程序需要等待输入输出的时候,切换到第二个程序来运行,第二个程序也等待输入输出的时候就可以切换到第三个程序,以此类推。进程是执行中的程序,除了可执行代码外还包含进程的活动信息和数据,比如用来存放函数变量、局部变量、返回值的用户栈,存放进程相关数据的数据段,内核中进程间切换的内核栈,动态分配的堆。
2025-11-16 15:22:06
893
原创 复杂业务系统线上问题排查过程
如下面的例子中,如果将34单独合并b,外层再包裹a似乎是合理的,但是将34先包裹a后再合并5的b也是合理的,甚至有没有办法将67一并合并,因为其都存在b标签。如果仅存在单个文本节点的情况下,是符合设计的结构,而如果是存在多个节点,除了Void/Embed节点的情况外,则说明DOM结构被破坏了,这里我们就需要移除掉多余的节点。而当我们输入完成后,数据结构Model层的内容是会将文本放置于text前,这部分则是编辑器来控制的行为,这跟我们输入非中文的表现是一致的,也是符合预期表现的。
2025-11-15 16:44:50
708
原创 《刚刚问世》系列初窥篇-Java+Playwright自动化测试-- 操作Select下拉选择框 - 中篇(详细教程)
对高性能内存池项目感兴趣的朋友可以看这篇文章:三周肝出4000行代码,我的内存池竟然让malloc"破防"了!如果你想深入掌握内存池的设计精髓,想拥有一个能让面试官眼前一亮的硬核项目,想在简历上添加最亮眼的技术标签,我强烈推荐你了解我最新打磨完成的 高性能内存池实战项目!// block1指向block2。// block2是最后一个。// 指向实际内存块。
2025-11-15 16:40:41
669
原创 学习理论:代理损失函数的泛化界与Rademacher复杂度
根据论文及实验经验,建议将LoRA同时作用于注意力层与MLP层(如target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]),以有效提升模型精度。优化后,模型训练速度提升2倍,显存占用降低70%。传统大语言模型微调往往面临硬件要求高、迭代速度慢和资源受限等挑战,而Unsloth通过高效的底层实现和友好的接口设计,显著降低了微调的技术门槛,使更多人能够高效、低成本地训练属于自己的定制模型。
2025-11-15 16:36:14
629
原创 Coze工作流实战:快速搭建网站的智能客服助手
通过利用这些特性,你能写出更高效、清晰、易维护的 PHP 代码。无论是构建小项目还是大型应用,像这样的现代 PHP 工具都能帮你创建更好的软件,在快速演进的 Web 开发世界中保持领先。另外,当处理大量常量时,很容易搞不清它们的含义,也难以确保使用的一致性。随着 Enums、Fibers 和 Attributes 的引入,PHP 开发者现在有了能显著提升代码可读性、性能和可维护性的工具。类型安全:不像 docblocks,attributes 是类的实例,意味着你可以在应用中强制类型检查和验证。
2025-11-15 16:31:16
807
原创 一步一步学习使用LiveBindings()TListView进阶使用(),打造天气预报程序
HDRP引入更高精度的光照贴图UV生成和分辨率控制,URP随后适配简化版流程,如自动生成Lightmap UVs功能。Unity 5.x之前采用Enlighten光照系统,仅支持静态物体烘焙,动态物体需依赖Light Probe间接光照。URP整合了轻量级烘焙管线,支持混合光照模式(Mixed Lighting),允许静态物体烘焙阴影与动态物体实时交互。光源设为Mixed模式,静态阴影烘焙到光照贴图,动态物体接收实时阴影。:远景物体降低Scale In Lightmap值。
2025-11-15 16:26:06
354
原创 一款为程序员和运维人员量身打造的一站式开发运维利器!
如下面的例子中,如果将34单独合并b,外层再包裹a似乎是合理的,但是将34先包裹a后再合并5的b也是合理的,甚至有没有办法将67一并合并,因为其都存在b标签。如果仅存在单个文本节点的情况下,是符合设计的结构,而如果是存在多个节点,除了Void/Embed节点的情况外,则说明DOM结构被破坏了,这里我们就需要移除掉多余的节点。而当我们输入完成后,数据结构Model层的内容是会将文本放置于text前,这部分则是编辑器来控制的行为,这跟我们输入非中文的表现是一致的,也是符合预期表现的。
2025-11-14 14:20:26
418
原创 聊一聊 .NET 中的 CancellationTokenSource
对高性能内存池项目感兴趣的朋友可以看这篇文章:三周肝出4000行代码,我的内存池竟然让malloc"破防"了!如果你想深入掌握内存池的设计精髓,想拥有一个能让面试官眼前一亮的硬核项目,想在简历上添加最亮眼的技术标签,我强烈推荐你了解我最新打磨完成的 高性能内存池实战项目!// block1指向block2。// block2是最后一个。// 指向实际内存块。
2025-11-14 14:16:11
649
原创 HarmonyOS编写教师节贺卡
根据论文及实验经验,建议将LoRA同时作用于注意力层与MLP层(如target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]),以有效提升模型精度。优化后,模型训练速度提升2倍,显存占用降低70%。传统大语言模型微调往往面临硬件要求高、迭代速度慢和资源受限等挑战,而Unsloth通过高效的底层实现和友好的接口设计,显著降低了微调的技术门槛,使更多人能够高效、低成本地训练属于自己的定制模型。
2025-11-14 14:11:23
801
原创 为什么不建议在 Docker 中跑 MySQL?
通过利用这些特性,你能写出更高效、清晰、易维护的 PHP 代码。无论是构建小项目还是大型应用,像这样的现代 PHP 工具都能帮你创建更好的软件,在快速演进的 Web 开发世界中保持领先。另外,当处理大量常量时,很容易搞不清它们的含义,也难以确保使用的一致性。随着 Enums、Fibers 和 Attributes 的引入,PHP 开发者现在有了能显著提升代码可读性、性能和可维护性的工具。类型安全:不像 docblocks,attributes 是类的实例,意味着你可以在应用中强制类型检查和验证。
2025-11-14 14:06:40
819
原创 从MMoE到PLE:读懂多任务学习架构的渐进式演化
HDRP引入更高精度的光照贴图UV生成和分辨率控制,URP随后适配简化版流程,如自动生成Lightmap UVs功能。Unity 5.x之前采用Enlighten光照系统,仅支持静态物体烘焙,动态物体需依赖Light Probe间接光照。URP整合了轻量级烘焙管线,支持混合光照模式(Mixed Lighting),允许静态物体烘焙阴影与动态物体实时交互。光源设为Mixed模式,静态阴影烘焙到光照贴图,动态物体接收实时阴影。:远景物体降低Scale In Lightmap值。
2025-11-14 14:01:35
322
原创 Unigine整合Myra UI Library全纪录():渲染
但可惜,事实并非如此,实际上,图中右侧的结果只是多次运行结果中最好的一次,几乎不可控,就像抽卡游戏里非常小概率的金卡一样。回看刚刚每轮的损失,我们会发现,造成这种差别的原因是:准确率只在0到1间波动,而逻辑回归的平均损失却在1-10这个量级内,相比之下,浅层神经网络的平均损失已经降到了0到1之间。最后附上完整代码,依旧要强调的是,在规范流程里,我们应该根据每次验证的准确率调整超参数,最后再进行测试,只是这部分内容还在后面,我们经过系统学习后再正式引入这部分。
2025-11-13 17:00:25
365
原创 Netflix确保数亿用户观影体验的“事件”管理是如何构建与实践的?
该方法将复杂的实时镜面积分拆分为预滤波环境贴图和BRDF积分两部分:预滤波环境贴图存储不同粗糙度下的环境光卷积结果,BRDF积分贴图(LUT)则编码菲涅尔与几何项的组合效应。传统实时计算Cook-Torrance积分需处理O(n)量级的视角-光线组合,而分裂求和近似将其降为O(1)的贴图采样。引入RGBM编码的HDR环境贴图支持,解决低动态范围贴图的亮度失真问题,预滤波mipmap层级扩展至8级。首次引入分裂求和近似法,采用512x512的立方体贴图存储预滤波环境光,但仅支持静态场景反射。
2025-11-13 16:55:57
295
原创 List之高效安全的 Java 列表深复制工具:ListCopyUtils 的设计与实践
(1)为了避免排序或者256次递归,首先利用直方图的有关属性,并定义了一个二维数组,来保存图像中各个色阶像素的有关信息,二维数组的第一维范围从0到255,表示色阶值或者说亮度值,第二维的范围是动态的,其大小是图像中具有该色阶或亮度像素的个数,这样,比如数组Index[light][10]是表示亮度等于light的所有像素的集合中的第十个像素的索引(或者位置信息),因此,可以明显的看到这个数组的第二维的里所有元素相加的总和即为图像的像素个数。这样就记录了图像中不同色阶的位置信息,并具有一定的统计和排序意义。
2025-11-13 16:51:24
305
原创 史诗级漏洞警报:ASP.NET Core 被曝 CVSS . 分漏洞,几乎所有.NET 版本无一幸免!
而.NET的RID支持linux-musl-arm64/linux-musl-x64,所以理论上可以将.NET程序编译为原生的Linux动态库(.so),然后在鸿蒙的原生项目中,通过dlopen以及dlsym等函数调用C#中的入口函数。鸿蒙系统中seccomp的系统调用白名单如下:https://gitee.com/openharmony/startup_init/blob/master/services/modules/seccomp/seccomp_policy/app.seccomp.policy。
2025-11-13 16:46:38
245
原创 一款智能手表上语音通话时的音频设备动态切换
自适应探针体积(Adaptive Probe Volumes)是Unity URP渲染管线中用于优化间接光照烘焙的核心技术,它通过自动化生成探针网格,动态适配场景几何密度,实现高效的光照数据采样与存储?:在静态场景中,动态物体无法直接使用烘焙光照贴图,光照探针通过存储空间中的光照信息,让动态物体也能获得与静态环境一致的间接光照效果。:高密度区域(如室内细节)使用小间距探针(1-3米),低密度区域(如开放地形)使用大间距探针(9-27米)?:基于场景几何密度自动生成规则排列的探针点,无需手动放置?
2025-11-13 16:41:27
336
原创 稍加改进的Switch/Case扩展方法
但可惜,事实并非如此,实际上,图中右侧的结果只是多次运行结果中最好的一次,几乎不可控,就像抽卡游戏里非常小概率的金卡一样。回看刚刚每轮的损失,我们会发现,造成这种差别的原因是:准确率只在0到1间波动,而逻辑回归的平均损失却在1-10这个量级内,相比之下,浅层神经网络的平均损失已经降到了0到1之间。最后附上完整代码,依旧要强调的是,在规范流程里,我们应该根据每次验证的准确率调整超参数,最后再进行测试,只是这部分内容还在后面,我们经过系统学习后再正式引入这部分。
2025-11-12 15:20:13
545
原创 Asp.Net 网站优化 数据库优化措施 使用主从库(上)
该方法将复杂的实时镜面积分拆分为预滤波环境贴图和BRDF积分两部分:预滤波环境贴图存储不同粗糙度下的环境光卷积结果,BRDF积分贴图(LUT)则编码菲涅尔与几何项的组合效应。传统实时计算Cook-Torrance积分需处理O(n)量级的视角-光线组合,而分裂求和近似将其降为O(1)的贴图采样。引入RGBM编码的HDR环境贴图支持,解决低动态范围贴图的亮度失真问题,预滤波mipmap层级扩展至8级。首次引入分裂求和近似法,采用512x512的立方体贴图存储预滤波环境光,但仅支持静态场景反射。
2025-11-12 15:15:36
410
原创 依赖属性之“风云再起”
(1)为了避免排序或者256次递归,首先利用直方图的有关属性,并定义了一个二维数组,来保存图像中各个色阶像素的有关信息,二维数组的第一维范围从0到255,表示色阶值或者说亮度值,第二维的范围是动态的,其大小是图像中具有该色阶或亮度像素的个数,这样,比如数组Index[light][10]是表示亮度等于light的所有像素的集合中的第十个像素的索引(或者位置信息),因此,可以明显的看到这个数组的第二维的里所有元素相加的总和即为图像的像素个数。这样就记录了图像中不同色阶的位置信息,并具有一定的统计和排序意义。
2025-11-12 15:10:23
293
原创 Create Chen
而.NET的RID支持linux-musl-arm64/linux-musl-x64,所以理论上可以将.NET程序编译为原生的Linux动态库(.so),然后在鸿蒙的原生项目中,通过dlopen以及dlsym等函数调用C#中的入口函数。鸿蒙系统中seccomp的系统调用白名单如下:https://gitee.com/openharmony/startup_init/blob/master/services/modules/seccomp/seccomp_policy/app.seccomp.policy。
2025-11-12 15:05:01
272
原创 一句话清晰总结协变和逆变
自适应探针体积(Adaptive Probe Volumes)是Unity URP渲染管线中用于优化间接光照烘焙的核心技术,它通过自动化生成探针网格,动态适配场景几何密度,实现高效的光照数据采样与存储?:在静态场景中,动态物体无法直接使用烘焙光照贴图,光照探针通过存储空间中的光照信息,让动态物体也能获得与静态环境一致的间接光照效果。:高密度区域(如室内细节)使用小间距探针(1-3米),低密度区域(如开放地形)使用大间距探针(9-27米)?:基于场景几何密度自动生成规则排列的探针点,无需手动放置?
2025-11-12 14:59:28
341
原创 CSS十问——好奇心+刨根问底=CSSer
但可惜,事实并非如此,实际上,图中右侧的结果只是多次运行结果中最好的一次,几乎不可控,就像抽卡游戏里非常小概率的金卡一样。回看刚刚每轮的损失,我们会发现,造成这种差别的原因是:准确率只在0到1间波动,而逻辑回归的平均损失却在1-10这个量级内,相比之下,浅层神经网络的平均损失已经降到了0到1之间。最后附上完整代码,依旧要强调的是,在规范流程里,我们应该根据每次验证的准确率调整超参数,最后再进行测试,只是这部分内容还在后面,我们经过系统学习后再正式引入这部分。
2025-11-11 14:41:12
858
原创 漫话JavaScript与异步·第三话——Generator:化异步为同步
该方法将复杂的实时镜面积分拆分为预滤波环境贴图和BRDF积分两部分:预滤波环境贴图存储不同粗糙度下的环境光卷积结果,BRDF积分贴图(LUT)则编码菲涅尔与几何项的组合效应。传统实时计算Cook-Torrance积分需处理O(n)量级的视角-光线组合,而分裂求和近似将其降为O(1)的贴图采样。引入RGBM编码的HDR环境贴图支持,解决低动态范围贴图的亮度失真问题,预滤波mipmap层级扩展至8级。首次引入分裂求和近似法,采用512x512的立方体贴图存储预滤波环境光,但仅支持静态场景反射。
2025-11-11 14:36:21
267
原创 【缓存与数据库双写一致性的终极指南】旁路缓存下,我们如何避免“脏数据”灾难?
(1)为了避免排序或者256次递归,首先利用直方图的有关属性,并定义了一个二维数组,来保存图像中各个色阶像素的有关信息,二维数组的第一维范围从0到255,表示色阶值或者说亮度值,第二维的范围是动态的,其大小是图像中具有该色阶或亮度像素的个数,这样,比如数组Index[light][10]是表示亮度等于light的所有像素的集合中的第十个像素的索引(或者位置信息),因此,可以明显的看到这个数组的第二维的里所有元素相加的总和即为图像的像素个数。这样就记录了图像中不同色阶的位置信息,并具有一定的统计和排序意义。
2025-11-11 14:31:59
215
原创 基于 RuoYi-Vue-Pro 定制了一个后台管理系统 magic-admin , 开源出来!
而.NET的RID支持linux-musl-arm64/linux-musl-x64,所以理论上可以将.NET程序编译为原生的Linux动态库(.so),然后在鸿蒙的原生项目中,通过dlopen以及dlsym等函数调用C#中的入口函数。鸿蒙系统中seccomp的系统调用白名单如下:https://gitee.com/openharmony/startup_init/blob/master/services/modules/seccomp/seccomp_policy/app.seccomp.policy。
2025-11-11 14:26:50
390
原创 StarRocks 如何在本地搭建存算分离集群
自适应探针体积(Adaptive Probe Volumes)是Unity URP渲染管线中用于优化间接光照烘焙的核心技术,它通过自动化生成探针网格,动态适配场景几何密度,实现高效的光照数据采样与存储?:在静态场景中,动态物体无法直接使用烘焙光照贴图,光照探针通过存储空间中的光照信息,让动态物体也能获得与静态环境一致的间接光照效果。:高密度区域(如室内细节)使用小间距探针(1-3米),低密度区域(如开放地形)使用大间距探针(9-27米)?:基于场景几何密度自动生成规则排列的探针点,无需手动放置?
2025-11-11 14:22:02
378
原创 【渲染流水线】[光栅阶段]-[光栅插值]以UnityURP为例
但可惜,事实并非如此,实际上,图中右侧的结果只是多次运行结果中最好的一次,几乎不可控,就像抽卡游戏里非常小概率的金卡一样。回看刚刚每轮的损失,我们会发现,造成这种差别的原因是:准确率只在0到1间波动,而逻辑回归的平均损失却在1-10这个量级内,相比之下,浅层神经网络的平均损失已经降到了0到1之间。最后附上完整代码,依旧要强调的是,在规范流程里,我们应该根据每次验证的准确率调整超参数,最后再进行测试,只是这部分内容还在后面,我们经过系统学习后再正式引入这部分。
2025-11-10 15:19:30
371
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅