Cassandra简介

侵泊倜奶随着处理器主频的越来越高,每次读写一次磁盘要耗费很多个时钟周期来等待磁盘操作的完成,与其傻傻等待,在这等待的过程中我们可以做更多有意义的事情,如当第一个程序需要等待输入输出的时候,切换到第二个程序来运行,第二个程序也等待输入输出的时候就可以切换到第三个程序,以此类推。

这就是多道程序的思想,要实现一个多道程序操作系统, 我们只需要实现以下两点就可以了:

在内存中可以同时存在多个进程

在满足某些条件的情况下, 可以让执行流在这些进程之间切换

什么是进程? 进程 = 程序 + 执行

进程是执行中的程序,除了可执行代码外还包含进程的活动信息和数据,比如用来存放函数变量、局部变量、返回值的用户栈,存放进程相关数据的数据段,内核中进程间切换的内核栈,动态分配的堆。

上下文切换

在yield-os.c中构建了两个执行流,不断交替输出A和B,基本原理就是进程A运行的时候触发了系统调用,通过自陷指令陷入到内核中,根据__am_asm_trap(),A的上下文结构(Context)将会被保存在A的栈上。系统调用完后通过__am_asm_trap()恢复A的上下文,如果此时不恢复A的上下文,而是恢复B的上下文,那么执行完__am_asm_trap()

来看下yield-os.c执行流是如何进行进程切换的。首先贴出它的代码。

这个PCB是union类型的,而不是struct类型的,原因如下:定义数据的时候把PCB的stack栈空间和cp 记录上下文指针的元数据存放在同一块内存上。即pcb.stack占满整个PCB内存,然后PCB.CP放在内存的栈底。这样在上下文恢复时用 cp 指向的地址就能直接恢复栈上保存的 Context。

#define STACK_SIZE (4096 * 8)

typedef union {

uint8_t stack[STACK_SIZE];

struct { Context *cp; }; //(context pointer)来记录上下文结构的位置

} PCB;

int main() {

cte_init(schedule);

pcb[0].cp = kcontext((Area) { pcb[0].stack, &pcb[0] + 1 }, f, (void *)1L);

pcb[1].cp = kcontext((Area) { pcb[1].stack, &pcb[1] + 1 }, f, (void *)2L);

yield();

panic("Should not reach here!");

}

第一件事先初始化一下CTE

cte_init的作用是定义了待会跳转去异常处理的地址传给mtvec,然后注册回调函数shedule`

bool cte_init(Context*(*handler)(Event, Context*)) {

// initialize exception entry

asm volatile("csrw mtvec, %0" : : "r"(__am_asm_trap)); //把amasmtrap的地址传给mtvec

user_handler = handler;

return true;

}

这个

static Context *schedule(Event ev, Context *prev) {

current->cp = prev;

current = (current == &pcb[0] ? &pcb[1] : &pcb[0]);

return current->cp;

}

然后把执行完cte_init(schedule)之后到了

pcb[0].cp = kcontext((Area) { pcb[0].stack, &pcb[0] + 1 }, f, (void *)1L);

pcb[1].cp = kcontext((Area) { pcb[1].stack, &pcb[1] + 1 }, f, (void *)2L);

先来看下kcontext()的代码。第一个参数{ pcb[0].stack, &pcb[0] + 1 }就是栈空间,随后将函数名当成指针,函数f 会自动“退化”为指向该函数的指针。于是此时entry就是f了。如果指针后面赋值为mepc=(uintptr_t)entry,那么就会自动执行函数f,带上参数1。

下一行同理

Context *kcontext(Area kstack, void (*entry)(void *), void *arg) {

Context *cp = (Context *)(kstack.end - sizeof(Context));

cp->mepc = (uintptr_t)entry;

cp->mstatus = 0x1800;

cp->gpr[10] = (uintptr_t)arg; //a0传参

return cp;

}

随后陷入yield()

void yield() {

#ifdef __riscv_e

asm volatile("li a5, -1; ecall");

#else

asm volatile("li a7, -1; ecall");

#endif

}

于是进行ecall指令

INSTPAT("0000000 00000 00000 000 00000 11100 11", ecall , I, s->dnpc = isa_raise_intr(11,s->pc);etrace());

然后调用isa_raise_intr(11,s->pc)函数。

word_t isa_raise_intr(word_t NO, vaddr_t epc) {

/* TODO: Trigger an interrupt/exception with ``NO''. 待办事项:使用“NO”触发中断/异常。

* Then return the address of the interrupt/exception vector. 然后返回中断/异常向量的地址

*/

cpu.mstatus = 0x00001800;

cpu.mepc = epc;

cpu.mcause = NO;

return cpu.mtvec;

}

此时PC会跳转到之前定义的mtvec中,也就是cte_init中的__am_asm_trap函数。

__am_asm_trap:

addi sp, sp, -CONTEXT_SIZE

MAP(REGS, PUSH)

csrr t0, mcause

csrr t1, mstatus

csrr t2, mepc

STORE t0, OFFSET_CAUSE(sp)

STORE t1, OFFSET_STATUS(sp)

STORE t2, OFFSET_EPC(sp)

# set mstatus.MPRV to pass difftest

li a0, (1 << 17)

or t1, t1, a0

csrw mstatus, t1

mv a0, sp

call __am_irq_handle

mv sp, a0

LOAD t1, OFFSET_STATUS(sp)

LOAD t2, OFFSET_EPC(sp)

csrw mstatus, t1

csrw mepc, t2

MAP(REGS, POP)

addi sp, sp, CONTEXT_SIZE

mret

这个函数作用之前讲过了,将上下文保存在栈上,然后调用handler之后还原现场,但此时我们把a0作为参数给sp,那就能做到线程切换,具体来看代码。会跳转到__am_irq_handle这个函数,看看他的源码。

Context* __am_irq_handle(Context *c) {

if (user_handler) {

Event ev = {0};

switch (c->mcause) {

case 11:

ev.event=EVENT_YIELD;

if(c->GPR1!=-1)

ev.event = EVENT_SYSCALL;

c->mepc += 4;

break;

default: ev.event = EVENT_ERROR; break;

}

//printf("mcause = %s\n",c->mcause);

c = user_handler(ev, c); //调用之前注册的handler

assert(c != NULL);

}

return c;

}

目前识别出是yield之后然后调用之前注册的回调函数。也就是shedule

static Context *schedule(Event ev, Context *prev) {

current->cp = prev;

current = (current == &pcb[0] ? &pcb[1] : &pcb[0]);

return current->cp;

}

可以看到cte_init()在trace中是这么传递参数的。

image

意思就是根据riscv地abi切换a0的值,也就是切换线程,随后

mv sp, a0

LOAD t1, OFFSET_STATUS(sp)

LOAD t2, OFFSET_EPC(sp)

csrw mstatus, t1

csrw mepc, t2

MAP(REGS, POP)

addi sp, sp, CONTEXT_SIZE

mret

恢复现场,切换为B线程,也就是所有寄存器,什么通用寄存器堆,mepc,mcause, mstatus, mepc都一模一样。

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值