数据湖与数据仓库体系解析
一、数据湖核心定义
核心特征矩阵
维度 | 数据湖特性 | 典型数据示例 |
---|---|---|
数据结构 | 原始形态保留 | 日志文件/传感器数据 |
数据类型 | 多模态存储 | 图片/视频/JSON文档 |
处理能力 | 实时+批量处理 | 流计算/机器学习 |
二、数据湖架构模型
分层处理架构
三、数据湖 vs 数据仓库对比
体系对比全景图
数据仓库 和 数据湖 的区别表格
维度 | 数据仓库 | 数据湖 |
---|---|---|
数据形态 | 清洗后的结构化数据 | 原始数据(结构/非结构) |
模式定义 | 数据存储之前定义数据模式 数据集成之前完成大量工作 数据的价值提前明确 | 数据存储之后定义数据模式 提供敏捷、简单的数据集成 数据的价值尚未明确 |
存取方法 | 标准SQL接口 | 应用程序,类SQL的程序 |
优势 | 多数据源集成,干净、安全的数据、转换一次,多次使用 | 无限扩展性,并行执行,支持编辑框架,数据经济 |
四、技术实现路径
数据湖建设三步法
关键技术组件
组件类型 | 数据仓库方案 | 数据湖方案 |
---|---|---|
存储引擎 | 列式存储(如Redshift) | 对象存储(如S3) |
计算引擎 | MPP架构 | Spark/Flink |
元数据管理 | 集中式Catalog | 分布式元数据服务 |
安全控制 | 行列级权限 | 动态数据掩码 |
五、典型应用场景
混合架构实践案例
场景对比矩阵
场景特征 | 适用数据仓库 | 适用数据湖 |
---|---|---|
数据结构 | 稳定Schema | 动态变化结构 |
查询模式 | 预定义分析 | 探索式分析 |
数据新鲜度 | T+1批量更新 | 实时流式接入 |
用户角色 | 业务分析师 | 数据科学家 |
行业实践:
- 沃尔玛使用数据湖存储每日50TB销售点数据,支撑实时定价分析
- 平安银行构建湖仓一体架构,查询性能提升3倍,存储成本降低40%
技术趋势:Delta Lake/Iceberg等开源方案正在模糊湖仓边界
湖仓-知识点
湖仓一体架构,就是数据库和数据湖一起使用,没有明确的数据先放进数据湖,理清楚之后逐步从数据湖提取出来入仓库,如此数据湖里面所存的数据量不会非常的庞大,而且理清楚后就可以入仓库,形成一个良性的循环。
软考经验
数据仓库和数据湖的区别需学习掌握,不排除会出题会出一些填空。
写在最后 ✨
各位技术小伙伴们~ 👋
如果觉得这篇解析对你有帮助:
- 👉 点击关注 → 不错过后续的架构干货
- 👍 点赞支持 → 您的鼓励是我更新的动力
- 💾 收藏备用 → 搭建系统时随时查阅
- 🎯 转发分享 → 帮助更多小伙伴少走弯路
「小贴士」:点击头像→【关注】按钮,系统架构师成长之路不迷路! 🚀