9.霍夫变换:圆——介绍、用Hough检测圆、圆的Hough变换_1

目录

介绍

用Hough检测圆

圆的Hough变换


介绍

画好直线之后,记住,线是参数模型最简单的形式,现在我们来看看更复杂的东西,也就是圆。

这是圆的方程,其中 a 和 b 是中心,r 是半径:

现在我们假设半径已知。我们只需要找到这些点的位置。

这里有一个圆,在这个圆上有三个点,这里的蓝点:

那么,霍夫空间是什么呢?

因为通常有三个未知数,a b r,但是我告诉过你们半径,霍夫空间就是 a 和 b :

对,中心位置 x 和 y 方向。现在我们考虑第一点,比如说,x0 y0,这一点就在下面图片那里:

所以这个点必须在圆上,我们知道它的半径 r。

一种思考方法是:圆的半径是这个点的半径 r,它的作用是为一组点投票,这就是这条绿线所代表的。

这一组点在ab空间的这个位置附近,对吧?

对于图像空间中的一个点,我们在霍夫空间中得到半径为r的圆:

让我们进入下一点:

是一样的,所以它的半径是r。

在霍夫空间中,我们会沿着这个圈投票:

下一点:

如果图像中的每个点都投了一个圈,我们就会得到所有的选票:

就像之前一样,我们在这里得到了大多数的选票这对应于中间点,这就是画在这里的点:

所以它的作用就像之前我们选直线一样,只是现在我们不用正弦曲线,而是在一个ab Hough的空间里画一个圆。

用Hough检测圆

事实上,这里有一个很好的运行例子:

这是一张非常古老的照片,但是你可以在这里看到,有一个保龄球,这是画十字的地方:

就像。。。给你们展示一些其他方法来找到这个移动的球,你可以想象寻找移动的东西。

毕竟,它还没有击中要害。但是当你寻找移动的物体时,他们会找到这个边界框。

我们怎么能找到比球更多的东西呢?

实际上,如果你仔细看,你会发现这条小巷很亮:

Okay,事实上,过一会儿我们会讨论反射函数和镜面反射函数,你们会讨论为什么在这条球道上你会看到球的图像。

因为这个,这里也有运动,所以你得到了这个边界框(如图)。但没关系,我们说的基本上就是它能找到那个圆。

这是另一个例子:

实际上,如果你输入Hough变换圆或者类似的东西到谷歌,在谷歌中,你寻找图像,你会得到这个图像。

这张照片是由Vivek Kwatra拍摄的,当时他还是个研究生,我班上的助教,大概是在1811年。

我们所做的就是把这些硬币放在有纹理的背景上然后拍张照片。

他这么做是因为他不得不这么做,因为他是我的助教。他现在是一个非常有名的人在做很酷的研究工作。

基本上,你可以用这个来计算边缘,这是它的边缘图像(如图),然后我们可以寻找圆。

现在,我们要用已知的半径方法。假设我们从一便士的半径开始。你可能会看到硬币中间有一个很好的亮点:

现在你可能还会注意到,有一些区域是膨胀的:

这里就没那么多了:

那是因为你可以在硬币的圆里面再装一个圆,

绕着圆的边缘,中心绕着圆的中间旋转:

这就是这个小圆的中心:

但在真正的硬币上,它们会对齐,所以你会得到一个更亮的点:

那么我们如何找到25美分硬币呢?

我们用一个更大的半径,我们再次投票,你会看到这些点在这里,这里,这里:

现在这个便士的边缘(如图),他们再次投票给这个圆,但不像25美分硬币那样结实。

这是原始的图像:

这些是组合探测:

这很酷,你知道,你可以找到圆圈。

圆的Hough变换

假设你真的不知道半径。

那么我们该怎么办呢? 让我们一起来思考这个问题。

现在我们的霍夫空间有三个维度,a b r(如图),因为我们不知道半径是多少。

如果我有一个点(如图),会发生什么?

现在,如果我们假设这个点的半径是7,那么它会是一个围绕这个点的圆,就像我们之前做的那样。

如果半径是3,它会是另一个围绕同一个点的圆,但会小一些:

所以,我希望你们能开始看到我们在这里得到的实际上是一个圆锥。

所以,在未知半径的情况下,每个点在这个三维空间里都为一个完整的圆锥进行投票。

这就是这个圆锥的外观, 不是一个填充的圆锥,而是一个曲面。

我们继续取圆的下一点,看它的作用是什么?

它会投票给另一个锥体,你可以把这些加起来:

现在我要告诉你们这是很痛苦的一件事情。

事实上,如果你们中有人做了一个类似于这个的随机课程的习题集,我们会告诉你们关于寻找圆的问题。

如果你试着在一个巨大的3D空间里投票,它不会工作得很好。

在后面的很多文章中,我们会讲到ransack,它会克服这个维度。

但现在,只要知道我们有一个小问题,那就是不断增大的投票空间。

虽然这个问题是可以解决的,但处理的过程有点痛苦。

还记得我们去掉投票数的方法之一就是使用梯度方向吗?

因为如果我已有一个点 和 我已经知道了该点的梯度,而它可能只有一条可能的线。

我们可以对圆做同样的事情。

现在我们有一个未知的半径,但是我们有一个梯度,我们的霍夫空间是a b r:

但这一次,这里的一个点会有对应的梯度:

现在,如果我们知道半径,我们就会得到一个可能的圆。

所以,如果现在你告诉我这是一个点(如图),这是我知道半径的梯度,那就是中心唯一的位置。

但是如果半径是它的一半,那么圆心就在这里:

或者中心,我猜它也可能在另一边:

所以,只有当你有梯度的时候,这样的单条线路的投票才会发生:

所以在霍夫空间中,即使它是一个三维的霍夫空间,你只会沿着一条线投票:

这样稍微好一点,至少让投票更容易。

当你有这个三维的霍夫空间时,你仍然有这个问题。


——学会编写自己的代码,才能练出真功夫。

### 使用霍夫变换进行直线和检测 #### 霍夫变换简介 霍夫变换是一种用于在图像中识别特定形状的技术,尤其适用于检测简单几何图形如直线、形等。该方法通过将原始图像转换到参数空间来实现目标对象的提取[^3]。 #### 直线检测原理 为了理解如何应用霍夫变换来进行直线检测,考虑一个简单的例子:假设有一个二维平面上的一个点 (x₀, y₀),那么任何穿过此点的直线都可以表示为 \(y_0 = kx_0 + b\) 的形式,在这里 \(k\) 是斜率而 \(b\) 则代表截距。当我们将这些关系式看作是在另一个由 \(k\) 和 \(b\) 组成的空间内的单一线条时,则可以通过查找多个这样的线条之间的交叉点来定位实际存在于原图中的那条唯一的直线[^4]。 然而,由于垂直线的情况会导致无限大的斜率值,所以通常会采用极坐标系 (\(ρ\),\(θ\)) 来代替传统的笛卡儿坐标系描述直线的位置。此时,每一对 \((x_i , y_i)\) 坐标的组合都会被映射至一系列不同的角度-距离对上形成一条正弦波形轨迹;如果多组数据共同指向同一个位置的话就说明它们属于同一直线上的一部分[^1]。 ```python import cv2 import numpy as np def detect_lines(image_path): img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) edges = cv2.Canny(img, 50, 150, apertureSize=3) lines = cv2.HoughLines(edges, rho=1, theta=np.pi/180, threshold=200) result_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if lines is not None: for line in lines: r,theta=line[0] a,b=(np.cos(theta),np.sin(theta)) x0,y0=a*r,b*r x1=int(x0+1000*(-b)) y1=int(y0+1000*(a)) x2=int(x0-1000*(-b)) y2=int(y0-1000*(a)) cv2.line(result_img,(x1,y1),(x2,y2),(0,0,255),2) return result_img ``` 这段Python代码展示了怎样运用`cv2.HoughLines()`函数执行标准霍夫变换从而找到输入灰度图片中存在的所有可能的直线,并绘制出来显示给用户查看。 #### 检测原理 对于周来说,同样也可以借助类似的思路完成探测工作。具体而言就是在三维参数空间里寻找满足条件的中心点以及半径三者间的最佳匹配方案。OpenCV提供了专门针对这种情况优化过的API `HoughCircles()`, 它能够有效地减少计算量并提高准确性[^2]。 ```python def detect_circles(image_path): img = cv2.imread(image_path, cv2.IMREAD_COLOR) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) circles=cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,dp=1,minDist=20,param1=50,param2=30,minRadius=0,maxRadius=0) output=img.copy() if circles is not None: detected_circles=np.uint16(np.around(circles)) for circle in detected_circles[0,:]: center=(circle[0],circle[1]) radius=circle[2] # Draw the circumference of the circle. cv2.circle(output,center,radius,(0,255,0),2) # Draw a small filled circle at the center point to highlight it better visually. cv2.circle(output,center,2,(0,0,255),3) return output ``` 上述脚本实现了基本的功能——读取彩色图像文件作为源素材,接着调用`cv2.HoughCircles()`去发现潜在的目标物体并将结果可视化地呈现出来。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值