学数学的时候,很有可能会碰到有人说,i为-1的算术平方根,这是错误的。
问他们为什么是错误的,他们会拿出一些看似合理的理由,他们会说,Okay,从-1开始,根据定义:
这没有问题,然后他们会说,那好,既然这个是对的,那我们可以用根号-1替换掉,没错,这等于根号-1乘以根号-1:
然后根据算术平方根的性质,于是有a的算术平方根乘以b的算术平方根等于ab的算术平方根:
根据算术平方根的这种性质,他们会说,这等于根号下的:
两数相乘的算术平方根等于两数单独算术平方根的乘积,这里的算术平方根在右侧,根据这个,我们知道-1 * -1等于1,所以整个等于1的算术平方根,这是1的算术平方根:
也就是正平方根,所以它等于正1。于是,他们说,这显然错了,-1和1怎么可能相等呢?因此不能说。
不过我要指出的是,这一步并没有错:
虽然-1确实不等于1,但问题在于这一性质(),不应该在ab同时为负时使用,a和b同时为负,这并不正确。该性质的前提是:a和b不同时为负,其实,一般给出此性质时,都会有一些不起眼的附注。指出限制条件是a和b大于等于0,这个性质是在a和b都大于等于0时给出的,特别地,如果a和b同时为负的,这是不对的。
我们一直花了一些时间来说明,上面那个观点是错的。话虽如此,使用时还是需要小心,算一般的算术平方根时,比如求4的算术平方根,结果是+2。但4有两个平方根:-2也是4的平方根,-2乘以-2也是4,这个根号表示算术平方根,不考虑虚数和复数时,这表示正的平方根,4有两个平方根:+2和-2,但如果写的是这个根号(),表示正的平方根,即2。
所以考虑取负数的平方根时,甚至虚数或复数的平方根时,必须扩展这个根号的定义,对任何负数进行开方运算时,这表示已经不再是原来意义上的平方根函数了,现在,这是一个复的算术平方根函数,其取值范围是复数,而且求出的值也可以是复数。这样假设的话,从这个,我们能够知道:
我需要把条件注明了,a和b同时为负时这不成立,所以这只在 时成立,-x显然是负数或者0。这才能使用这个式子。如果
,这一切都是胡扯,得到的答案没有意义。如果i可以写成-1的平方根取复平方根函数的正支,那么这就可以写成
,-1和1真正出错的地方在于,但a和b同时为负时,使用了这一个性质(
),这毫无疑问是错误的。扩展算术平方根的定义,让其能够处理负数和虚数,然后就可以这样:
,当
时成立,别搞糊涂了,当
时,-x显然是非正数。
——请不断重复练习、练习、练习、再练习。。。