目录
选项A
选项B
选项D
选项C
选项A
Z1和Z2是两个不同的复数,,其中 t 是一个实数,且t大于0小于1,Arg(w)是非零复数w的主幅角,我们知道Arg是指位矢(shǐ)的幅角,位矢可以在复平面以及实轴上确定一个复数,我画一下:
纵轴是,横轴是
。
假设绿色就是我们的复数,也就是Z,
那么就代表这个角,所以
,所以
,这就是题干第二部分给我们的信息。
现在依次看一下这些选项(如图)并进行判断:
要知道的一点是,这是一道多选题,那么来判断一下。我们先来A选项:
首先找出 的幅值,我写一下,先看
,
就是这个式子
:
消掉 ,这里可以把t作为因子提出来,就等于:
这就是也就是这里的第一项。
接下来计算一下:
这项可以提出一个,把
作为公因子提出来,所以这部分等于
。
现在看一下这两个相加会如何,也就是选项A,把这两个加起来,看看能否化简,结果是:
继续化简,等于
我只是替换一下就等于
,再乘以
,而在这边也有
,所以就成了,把
提出来:
最后我们得出:
这是A选项简化之后的效果,现在看看能不能再进一步简化。t是一个系数,位于0和1之间,这是题干告诉我们的,t位于0和1之间,这是个正数,这也是正数,t比0大,比1小,所以这也是个正数,这只是个系数,所以其实它就等于,t仅仅是决定幅值大小的系数,所以这个式子就等于:
t仅仅是个系数,弄清楚一点,,这两个向量是指向不同方向的,所以这个复数和这一个互为相反数,但它们的绝对值 或者 说是幅值是一样的。把
写下来,这样做是为了得到同样的项,可以把
提取出来:
它和是一样的,因为它们的区别仅仅是方向不同,现在该怎么做呢?t的绝对值,记住t是正的,所以
,
也是正的,所以就是
,所以可以把它提取出来,也就得到了:
t消去了,前面剩下了一个1,所以最终结果就是:
所以选项A是对的。二者相加确实等于。
选项B
z-z1的幅角等于z-z2的幅角:
之前我们已经化简得到等于
,所以:
我们调用前面算出的结果,由于这部分等价于绝对值符号内部的部分,也就是这儿这部分,因而:
那么,问题是是等于多少呢?这里已经计算出结果,就是这部分。
这里我们得到统一的形式,把这乘上-1,然后把这个也乘上-1,连续乘以两个-1不改变式子。所以这就等于,或者说表达式就等于:
记住我刚才所做的,我们来思考一下,这里我乘以一个-1,这个
也乘以-1,两部分都乘以-1,也就相当于乘了两次-1,其实相当于乘以1。因此两个相乘项里面互换位置。
这个等式成立吗?是不是真的等于
,我们来思考一下,我画一个坐标图:
然后在坐标图上表示向量,这部分就是向量
:
现在,等于什么?关于 t ,我们知道它介于0和1之间,因此乘上 t 相当于缩短了向量
的长度,不用管是多长,假设就是这部分,它就表示向量
:
现在,等于什么?t -1 要记得 t 介于0和1之间,所以 t 要小于 1,因此 t - 1,也就是这部分
应该是一个负数。因此我们要用负数来对向量
进行比例缩放,那么这部分,
将会变成这样:
绿色线就是,而幅角就是这些向量和实轴的夹角,所以这部分
,这个幅角就是这个角度:
我们可以把它设为 :
那么这部分的幅角是多少?它就必须加上π或者加上180度,就是要绕半圆周:
因此它们不是同一个角,无论这里数字是多少,这个数都要加上π,当然也可以减去π:
但是它们肯定不会是相等的。因此我们可以排除了选项B。看完B后,我们直接看D,因为它和选项B很相似。
选项D
选项D告诉我们,现在我们还不知道要验证才知道的幅角是否等于
的幅角。所以我们来思考一下,当然,我们已经计算过
等于什么,它就等于这部分
,所以这种表述就等价于
:
直接使用上一集的计算结果。是否等于Arg(z_2-z_1)?让我们再来画一次坐标图,事实上,我们可以在这个坐标图里面画出
这部分。我们已经得到了它的幅角就等于这个角度:
紫色就是的幅角,也就是选项D中的
的
的幅角,而
就是把这个向量缩放后,用橙色表示的部分,很明显 t 是一个正数,所以这个向量方向不变,仅仅是长度上的缩放这个向量和这个向量,或者说这个复数和这个复数,他们的方向是相同的,也就是它们和实轴的夹角相等,红色表示的向量或者说复数表示的是这部分
,而蓝色的线就是表示
,显然他们的方向是相同的,幅角是相同的,所以选项D是正确项。
选项C
C选项给出了一个行列式,并说它等于0。我们来看他们是否成立,我们就可以把它们乘出来,看看有没有什么意思的地方,而且我们还可以借助前面的结果,A选项我们验证过了,算A选项时,我们求出了,我们得到了等式:
所以行列式的这一项,它就等于
。
这里有趣的是下面也有一个,我们就逐渐发现里相似的地方了,然后这一项
如果对这相减的两个数都求共轭,对两个数都求共轭,
的共轭减去
的共轭就等于:
而我们知道求共轭时,我实际上是对复数虚部的符号取反,而对这整个运算都求共轭就相当于把全部复数的虚部符号取反,结果就是虚部都变成了原来的相反数,我们就是这样做的,这就表示把虚部都取反了,如果你想确切地求共轭就可以令它等于A+Bi而第二项等于A1+B1i就可以进行运算了,但我想这都是很直观的,也就是只需要把这些复数的,全部虚部符号取反就行了。
有了这两个等式:、
。求这个行列式就相当容易了,
它就变成
,而这项
变成
,然后是
,而最后这一项是
,C选项就表示这两个对角相乘,也就是:
这两项的乘积,再减去这两项的乘积:
等于:
两边相等,所以显然它就等于0,所以C选项正确。
——请不断重复练习、练习、练习、再练习。。。