吴恩达机器学习--降维

  • 数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。
  • 可以把任何维度的数据降到任何想要的维度。
  • 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自己去发现了。 
  • 主成分分析(PCA)是最常见的降维算法。 

        在 PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据都 投射到该向量上时,我们希望投射平均均方误差能尽可能地小。方向向量是一个经过原点的向量,而投射误差是从特征向量向该方向向量作垂线的长度。 

要将 n 维数据降至 k 维,目标是找到向量 u(1),u(2),...,u(k)使得总的投射误差最小。
 

主成分分析与线性回顾的比较: 

        主成分分析与线性回归是两种不同的算法。主成分分析最小化的是投射误差(Projected Error),而线性回归尝试的是最小化预测误差。线性回归的目的是预测结果,而主成分分析不作任何预测。 

      上图中,左边的是线性回归的误差(垂直于横轴投影),右边则是主要成分分析的误差(垂直于红线投影)。 

      PCA 将 n 个特征降维到 k 个,可以用来进行数据压缩,如果 100 维的向量最后可以用 10维来表示,那么压缩率为 90%。同样图像处理领域的 KL 变换使用 PCA 做图像压缩。但 PCA 要保证降维后,还要保证数据的特性损失最小。 

       PCA 技术的一大好处是对数据进行降维的处理。我们可以对新求出的“主元”向量的重要性进行排序,根据需要取前面最重要的部分,将后面的维数省去,可以达到降维从而简化模型或是对数据进行压缩的效果。同时最大程度的保持了原有数据的信息。 
       PCA 技术的一个很大的优点是,它是完全无参数限制的。在 PCA 的计算过程中完全不需要人为的设定参数或是根据任何经验模型对计算进行干预,最后的结果只与数据相关,与用户是独立的。 但是,这一点同时也可以看作是缺点。如果用户对观测对象有一定的先验知识,掌握了数据的一些特征,却无法通过参数化等方法对处理过程进行干预,可能会得不到预期的效果,效率也不高。 
       如果我们希望这个比例小于 1%,就意味着原本数据的偏差有 99%都保留下来了,如果我们选择保留 95%的偏差,便能非常显著地降低模型中特征的维度了。 

 

假使我们正在针对一张 100×100 像素的图片进行某个计算机视觉的机器学习,即总共有 10000 个特征。 
1. 第一步是运用主要成分分析将数据压缩至 1000 个特征 
2. 然后对训练集运行学习算法 
3. 在预测时,采用之前学习而来的 Ureduce 将输入的特征 x 转换成特征向量 z,然后再进行预测 
注:

        如果我们有交叉验证集合测试集,也采用对训练集学习而来的 Ureduce。 错误的主要成分分析情况:一个常见错误使用主要成分分析的情况是,将其用于减少过拟合(减少了特征的数量)。这样做非常不好,不如尝试正则化处理。原因在于主要成分分析只是近似地丢弃掉一些特征,它并不考虑任何与结果变量有关的信息,因此可能会丢失非常重要的特征。然而当我们进行正则化处理时,会考虑到结果变量,不会丢掉重要的数据。 

        另一个常见的错误是,默认地将主要成分分析作为学习过程中的一部分,这虽然很多时候有效果,最好还是从所有原始特征开始,只在有必要的时候(算法运行太慢或者占用太多内存)才考虑采用主要成分分析。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值