python 人脸对比--百度API人脸相似度识别(超简单)

说明:这篇是写使用百度人脸识别API进行人脸相似度识别对比,如 给两个人物照片,判断是否是同一个人。简单的4步完成。
1,获取百度人脸识别API的API Key和Secret Key。(10分钟内完成)

使用百度账号登录百度AI平台,网址:http://ai.baidu.com/tech/face,
若没有直接注册一个账号。登录后需要点击“创建应用”填写命名一下,完成后返回,点击“管理应用”,就可以看到已经申请的[应用名称、AppID、API Key、Secret Key].

2,获取Access Token

1.向授权服务地址:https://aip.baidubce.com/oauth/2.0/token?发送请求 并在此URL后带上以下参数:
· grant_type: 必须参数,固定为client_credentials;
· client_id: 必须参数,应用的API Key;
· client_secret: 必须参数,应用的Secret Key;
例如:你申请的API Key是Va5yQRHlA4Fq5eR30vV4,
Secret Key是0rDSjzQ20XUj5itV6WRtznPQSzr5pV,进行如下拼接:

https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=Va5yQRHlA4Fq5eR30vV4&client_secret=0rDSjzQ20XUj5itV6WRtznPQSzr5pV
此url 为向授权服务请求的完整地址,先命名为 api1

2,获取access_token的完整内容

 response=requests.get(api1)
 print( response)
 # 打印结果如下:
 { "refresh_token":   "25.b55fe1d287227ca97aab219bb249b8ab.315360000.1798284651.282335-8574074",
"expires_in": 2592000,
"scope": "public wise_adapt",
"session_key": "9mzdDZXu3dENdFZQurfg0Vz8slgSgvvOAUebNFzyzcpQ5EnbxbF+hfG9DQkpUVQdh4p6HbQcAiz5RmuBAja1JJGgIdJI",
"access_token": "24.6c5e1ff107f0e8bcef8c46d3424a0e78.2592000.1485516651.282335-8574074",
"session_secret": "dfac94a3489fe9fca7c3221cbf7525ff"      } 
# 我们需要其中的 access_token 

3, 人脸匹配相似度的地址:“https://aip.baidubce.com/rest/2.0/face/v3/match

# 2,获取token值,拼接API
import requests
def get_token():
    response=requests.get(api1)
    access_token=eval(response.text)['access_token']   #eval函数将字符串转化为字典
    api2="https://aip.baidubce.com/rest/2.0/face/v3/match"+"?access_token="+access_token
    return api2
3,读取图片数据
import base64
import json
def read_img(img1,img2):                        #  两个图片参数
    with open(img1,'rb') as f:                  # 读取图片数据
        pic1=base64.b64encode(f.read())         # 图片数据编码为base64格式数据
    with open(img2,'rb') as f:
        pic2=base64.b64encode(f.read())
    params=json.dumps([                          # 将字典数据转化为字符串 
        {"image":str(pic1,"utf-8"),"image_type":'BASE64',"face_type":"LIVE"},
        {"image":str(pic2,"utf-8"),"image_type":'BASE64',"face_type":"IDCARD"}
    ])
    return params`在这里插入代码片`
4,发起请求拿到对比结果
def analyse_img(file1,file2):
    params=read_img(file1,file2)                 # 调用第一个函数的结果api
    api=get_token()                              # 调用第二个函数的图片数据
    content=requests.post(api,params).text       # 获取对比详细结果
    print(content)
    
analyse_img("zly01.jpg","zly02.jpg"):            # 找的两张 赵丽颖的照片
  
# 打印content内容如下:
{"error_code":0,"error_msg":"SUCCESS","log_id":1345050733350687141,"timestamp":1553335068,"cached":0,
"result":{"score":95.51683807,"face_list",[{"face_token":"938e0c197a7f53d9eced7551c6cd6c50"},{"face_token":"81ab41769b6fc5877d944415e380e326"}]}}
# 我们需要的是"score":95.51683807",相似度95.5,可以确认是同一个人。

找的图片:赵丽颖2张(zly01.jpg,zly02.jpg),刘亦菲一张(lyf01.jpg)
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

完整代码:
import requests
import base64
import json
# 1,准备好申请的人脸识别api,API Key, Secret Key
api1=“https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=Va5yQRHlA4Fq5eR30vV4&client_secret=0rDSjzQ20XUj5itV6WRtznPQSzr5pV”
# api2="https://aip.baidubce.com/rest/2.0/face/v3/match"

# 2,获取token值,拼接API
def get_token():
    response=requests.get(api1)
    access_token=eval(response.text)['access_token']
    api2="https://aip.baidubce.com/rest/2.0/face/v3/match"+"?access_token="+access_token
    return api2

# 3,读取图片数据
def read_img(img1,img2):
    with open(img1,'rb') as f:
        pic1=base64.b64encode(f.read())
    with open(img2,'rb') as f:
        pic2=base64.b64encode(f.read())
    params=json.dumps([
        {"image":str(pic1,"utf-8"),"image_type":'BASE64',"face_type":"LIVE"},
        {"image":str(pic2,"utf-8"),"image_type":'BASE64',"face_type":"IDCARD"}
    ])
    return params

# 4,发起请求拿到对比结果
def analyse_img(file1,file2):
    params=read_img(file1,file2)
    api=get_token()
    content=requests.post(api,params).text
    # print(content)
    score=eval(content)['result']['score']
    if score>80:
        print('图片识别相似度度为'+str(score)+',是同一人')
    else:
        print('图片识别相似度度为'+str(score)+',不是同一人')

analyse_img("zly01.jpg","zly02.jpg")

# 打印执行结果:图片识别相似度度为88.23068237,是同一人
# 换图片zly02.jpg和lyf01.jpg:图片识别相似度度为29.28668785,不是同一人

MICROSOFT 基础类库: 人脸相似度检测MFC 项目概述 =============================================================================== 应用程序向导已为您创建了这个 人脸相似度检测MFC 应用程序。此应用程序不仅演示 Microsoft 基础类的基本使用方法,还可作为您编写应用程序的起点。 本文件概要介绍组成 人脸相似度检测MFC 应用程序的每个文件的内容。 人脸相似度检测MFC.vcproj 这是使用应用程序向导生成的 VC++ 项目的主项目文件。 它包含生成该文件的 Visual C++ 的版本信息,以及有关使用应用程序向导选择的平台、配置和项目功能的信息。 人脸相似度检测MFC.h 这是应用程序的主要头文件。它包括其他项目特定的头文件(包括 Resource.h),并声明 C人脸相似度检测MFCApp 应用程序类。 人脸相似度检测MFC.cpp 这是包含应用程序类 C人脸相似度检测MFCApp 的主要应用程序源文件。 人脸相似度检测MFC.rc 这是程序使用的所有 Microsoft Windows 资源的列表。它包括 RES 子目录中存储的图标、位图和光标。此文件可以直接在 Microsoft Visual C++ 中进行编辑。项目资源位于 2052 中。 res\人脸相似度检测MFC.ico 这是用作应用程序图标的图标文件。此图标包括在主要资源文件 人脸相似度检测MFC.rc 中。 res\MFC.rc2 此文件包含不在 Microsoft Visual C++ 中进行编辑的资源。您应该将不可由资源编辑器编辑的所有资源放在此文件中。 ///////////////////////////////////////////////////////////////////////////// 应用程序向导创建一个对话框类: 人脸相似度检测MFCDlg.h,人脸相似度检测MFCDlg.cpp - 对话框 这些文件包含 C人脸相似度检测MFCDlg 类。该类定义应用程序主对话框的行为。该对话框的模板位于 人脸相似度检测MFC.rc 中,该文件可以在 Microsoft Visual C++ 中进行编辑。 ///////////////////////////////////////////////////////////////////////////// 其他功能: ActiveX 控件 应用程序包括对使用 ActiveX 控件的支持。 ///////////////////////////////////////////////////////////////////////////// 其他标准文件: StdAfx.h,StdAfx.cpp 这些文件用于生成名为 人脸相似度检测MFC.pch 的预编译头 (PCH) 文件和名为 StdAfx.obj 的预编译类型文件。 Resource.h 这是标准头文件,它定义新的资源 ID。 Microsoft Visual C++ 读取并更新此文件。 人脸相似度检测MFC.manifest 应用程序清单文件供 Windows XP 用来描述应用程序 对特定版本并行程序集的依赖性。加载程序使用此 信息从程序集缓存加载适当的程序集或 从应用程序加载私有信息。应用程序清单可能为了重新分发而作为 与应用程序可执行文件安装在相同文件夹中的外部 .manifest 文件包括, 也可能以资源的形式包括在该可执行文件中。 ///////////////////////////////////////////////////////////////////////////// 其他注释: 应用程序向导使用“TODO:”指示应添加或自定义的源代码部分。 如果应用程序在共享的 DLL 中使用 MFC,则需要重新发布这些 MFC DLL;如果应用程序所用的语言与操作系统的当前区域设置不同,则还需要重新发布对应的本地化资源 MFC90XXX.DLL。有关这两个主题的更多信息,请参见 MSDN 文档中有关 Redistributing Visual C++ applications (重新发布 Visual C++ 应用程序)的章节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论 6

打赏作者

我有辣条 跟我走

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值