一、题目:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
二、解题思路:
找规律:
第0阶台阶, 0种办法
第1阶台阶, 1种办法
第2阶台阶, 2种办法
第3阶台阶, 3种办法
第4阶台阶, 5种办法
…
也就是斐波那契数列,从第三项开始,该项的值为前两项值的和,f[n]=f[n-1]+f[n-2].
三、代码:
class Solution {
public:
int climbStairs(int n) {
int f[n+2];
f[0]=0;
f[1]=1;
f[2]=2;
for(int i =3;i<=n;i++){
f[i]=f[i-1]+f[i-2];
}
return f[n];
}
};
结果: