零基础入门推荐系统 - 新闻推荐-Task2 (DataWhale学习小组)

本文探讨了新闻推荐系统的数据探索性分析,包括用户点击新闻的环境、设备、操作系统和国家的分布,以及新闻的词数分布。发现用户对同一篇新闻重复点击的较少,大部分用户为非活跃用户。同时,用户点击新闻类型和新闻长度的分布揭示了用户偏好,部分用户有较强的新闻上下文相关性。
摘要由CSDN通过智能技术生成

零基础入门推荐系统 - 新闻推荐-Task2 (DataWhale学习小组)

数据探索性分析

加载需要的module

%matplotlib inline
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
#plt.rc('font', family='SimHei', size=13)
plt.rcParams['font.family'] = ['PingFang HK'] 

import os,gc,re,warnings,sys
warnings.filterwarnings("ignore")

导入数据并查看

articles = pd.read_csv('articles.csv')
articles = articles.rename(columns={
   'article_id':'click_article_id'})
print(articles.shape)
articles.head()
(364047, 4)
click_article_id category_id created_at_ts words_count
0 0 0 1513144419000 168
1 1 1 1405341936000 189
2 2 1 1408667706000 250
3 3 1 1408468313000 230
4 4 1 1407071171000 162
text_emb = pd.read_csv('articles_emb.csv')
print(text_emb.shape)
text_emb.head()
(364047, 251)
article_id emb_0 emb_1 emb_2 emb_3 emb_4 emb_5 emb_6 emb_7 emb_8 ... emb_240 emb_241 emb_242 emb_243 emb_244 emb_245 emb_246 emb_247 emb_248 emb_249
0 0 -0.161183 -0.957233 -0.137944 0.050855 0.830055 0.901365 -0.335148 -0.559561 -0.500603 ... 0.321248 0.313999 0.636412 0.169179 0.540524 -0.813182 0.286870 -0.231686 0.597416 0.409623
1 1 -0.523216 -0.974058 0.738608 0.155234 0.626294 0.485297 -0.715657 -0.897996 -0.359747 ... -0.487843 0.823124 0.412688 -0.338654 0.320786 0.588643 -0.594137 0.182828 0.397090 -0.834364
2 2 -0.619619 -0.972960 -0.207360 -0.128861 0.044748 -0.387535 -0.730477 -0.066126 -0.754899 ... 0.454756 0.473184 0.377866 -0.863887 -0.383365 0.137721 -0.810877 -0.447580 0.805932 -0.285284
3 3 -0.740843 -0.975749 0.391698 0.641738 -0.268645 0.191745 -0.825593 -0.710591 -0.040099 ... 0.271535 0.036040 0.480029 -0.763173 0.022627 0.565165 -0.910286 -0.537838 0.243541 -0.885329
4 4 -0.279052 -0.972315 0.685374 0.113056 0.238315 0.271913 -0.568816 0.341194 -0.600554 ... 0.238286 0.809268 0.427521 -0.615932 -0.503697 0.614450 -0.917760 -0.424061 0.185484 -0.580292

5 rows × 251 columns

train_click = pd.read_csv('train_click_log.csv')
print(train_click.shape)
train_click.head()
(1112623, 9)
user_id click_article_id click_timestamp click_environment click_deviceGroup click_os click_country click_region click_referrer_type
0 199999 160417 1507029570190 4 1 17 1 13 1
1 199999 5408 1507029571478 4 1 17 1 13 1
2 199999 50823 1507029601478 4 1 17 1 13 1
3 199998 157770 1507029532200 4 1 17 1 25 5
4 199998 96613 1507029671831 4 1 17 1 25 5
test_click = pd.read_csv('testA_click_log.csv')
print(test_click.shape)
test_click.head()
(518010, 9)
user_id click_article_id click_timestamp click_environment click_deviceGroup click_os click_country click_region click_referrer_type
0 249999 160974 1506959142820 4 1 17 1 13 2
1 249999 160417 1506959172820 4 1 17 1 13 2
2 249998 160974 1506959056066 4 1 12 1 13 2
3 249998 202557 1506959086066 4 1 12 1 13 2
4 249997 183665 1506959088613 4 1 17 1 15 5
click_log.csv文件数据中每个字段的含义
user_id: 用户的唯一标识
click_article_id: 用户点击的文章唯一标识
click_timestamp: 用户点击文章时的时间戳
click_environment: 用户点击文章的环境
click_deviceGroup: 用户点击文章的设备组
click_os: 用户点击文章时的操作系统
click_country: 用户点击文章时的所在的国家
click_region: 用户点击文章时所在的区域
click_referrer_type: 用户点击文章时,文章的来源

数据预处理:增加新变量

  • 计算用户点击rank和点击次数
# 对每个用户的点击时间戳进行排序
train_click['rank'] = train_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)
test_click['rank'] = test_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)

#计算用户点击文章的次数,并添加新的一列count
train_click['click_cnts'] = train_click.groupby(['user_id'])['click_timestamp'].transform('count')
test_click['click_cnts'] = test_click.groupby(['user_id'])['click_timestamp'].transform('count')
  • 结合article查看数据
train_click = train_click.merge(articles, how='left', on=['click_article_id'])
train_click.head()
user_id click_article_id click_timestamp click_environment click_deviceGroup click_os click_country click_region click_referrer_type rank click_cnts category_id created_at_ts words_count
0 199999 160417 1507029570190 4 1 17 1 13 1 11 11 281 1506942089000 173
1 199999 5408 1507029571478 4 1 17 1 13 1 10 11 4 1506994257000 118
2 199999 50823 1507029601478 4 1 17 1 13
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
天池赛事的零基础入门语义分割-地表建筑物识别任务是一个面向初学者的语义分割竞赛。任务的目标是利用机器学习和计算机视觉技术,对卫星图像中的地表建筑物进行标记和识别。 在这个任务中,参赛者需要使用给定的训练数据集进行模型的训练和优化。训练数据集包含了一系列卫星图像和相应的像素级标注,标注了地表建筑物的位置。参赛者需要通过分析训练数据集中的图像和标注信息,来构建一个能够准确地识别出地表建筑物的模型。 参赛者需要注意的是,语义分割是指将图像中的每个像素进行分类,使得同一类别的像素具有相同的标签。因此,在地表建筑物识别任务中,参赛者需要将地表建筑物区域与其他区域进行区分,并正确地进行标记。这对于初学者来说可能是一个挑战,因此需要掌握基本的图像处理和机器学习知识。 参赛者可以根据自己的理解,选择合适的算法和模型来完成这个任务。常见的方法包括卷积神经网络(CNN),通过设计适当的网络结构和训练方式,提高模型的准确性和泛化能力。同时,数据预处理和数据增强技术也是提高模型性能的关键。参赛者可以通过对数据进行增强和扩充,提高模型的鲁棒性和识别能力。 最后,参赛者需要使用训练好的模型对测试数据集进行预测,并生成预测结果。这些预测结果将用于评估参赛者模型的性能和准确度。评估指标通常包括像素级准确度(Pixel Accuracy)和平均交并比(Mean Intersection over Union),参赛者需要根据这些指标来评估和改进自己的模型。 总之,通过参加这个任务,初学者可以通过实践和挑战来提高自己的图像处理和机器学习技能,并掌握语义分割的基本概念和方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值