思维拓展:关于理解斐波那契数列的时间复杂度(C++)

本文探讨斐波那契数列的时间复杂度,通过递归和非递归算法进行分析。递归算法由于重复计算导致时间复杂度为O(2^n),而非递归算法则降低到O(n),显著提高了效率。
摘要由CSDN通过智能技术生成

首先理解斐波那契数列:

                          F(n)=\begin{cases} 1,& \text{ } x= 0,1\\ F(n-1)+F(n-2), & \text{ } x>1 \end{cases}

关于斐波那契数列的简介:

  斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

既然要计算时间复杂度,那我们就要先分析它,我们采用两种算法,递归算法非递归算法

1.递归算法<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值