ALGO-27 FBI树

ALGO-27 FBI树

问题描述

我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。 FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下: 1)T的根结点为R,其类型与串S的类型相同; 2)若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。 现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历序列。

输入格式

第一行是一个整数N(0 <= N <= 10),第二行是一个长度为2N的“01”串。

输出格式

包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。

样例输入

3 10001011

样例输出

IBFBBBFIBFIIIFF

数据规模和约定

对于40%的数据,N <= 2; 对于全部的数据,N <= 10。


总结:

1.深度优先遍历,先遍历左右子树,再遍历父节点

2.长度为1时,直接判断,大于1时,判断子节点,

3.递归

import java.util.Arrays;
import java.util.Scanner;

public class FbiTree {
    public static void main(String[] args) {
    Scanner sc =new Scanner(System.in);
    char[] c = sc.nextLine().toCharArray();
    f(c);
    sc.close();
    }
    static String f(char[] c){
        //长度为1,直接判断,打印并返回
        if(c.length==1){
            switch (c[0]) {
            case '1':
                System.out.print("I");
                return "I";
            case '0':
                System.out.print("B");
                return "B";
            default:
                break;
            }
        }
        //长度不为1,比较左右子树是否一致,不一致则返回"F"
        char[] c1 = Arrays.copyOfRange(c, 0, c.length/2);
        String left = f(c1);
        char[] c2 = Arrays.copyOfRange(c, c.length/2, c.length);
        String right = f(c2);
        if(left.equals(right)){
            System.out.print(left);
            return left;
        }else{
            System.out.print("F");
            return "F";
        }
    }
}

 

posted @ 2018-01-24 15:03 板栗子 阅读( ...) 评论( ...) 编辑 收藏
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值