mixed model混合模型

混合模型结合了固定效应和随机效应,适用于处理重复测量或相关数据。固定效应模型假定所有研究结果一致,适用于异质性小的情况;随机效应模型则允许回归系数为随机变量,适用于处理高维数据和参数个数大于观测个数的问题。随机效应有压缩功能,类似岭回归的二次惩罚。混合模型则考虑个体差异,如个体固定效应模型中每个个体有自己的截距项,而随机效应模型的截距项与X_(i,t)无关。" 139051723,7337247,深度学习:原理、应用与实践,"['深度学习', '神经网络', '计算机视觉', '自然语言处理', 'AI']
摘要由CSDN通过智能技术生成

混合模型是一个统计模型,包含fixed effects和random effects两种效应的混合。

当重复衡量(1)相同的统计单元,或(2)聚类,或(3)相关的统计单元时,混合模型尤其有效。

Ronald Fisher研究亲属间性状值的相关性时,引入random effects modes。1950年代,Charles Roy Henderson提出

(1)fixed effects的BLUE(best linear unbiased estimates)和

(2)random effects的BLUP(best linear unbiased predictions)。

随后,混合模型在统计研究中成为主流,包括计算maximum likelihood estimates,non-linear mixed effect modes,missing data in mixed effects modes,以及Bayesian estimation of mixed effects models等。

 

Fixed effects model

固定效应模型

应用前提是假定全部研究结果的方向与效应大小基本相同,即各独立研究的结果趋于一致,一致性检验差异无显著性。

因此,固定效应模型用于各独立研究间无差异,或差异较小的研究。

异质性小:固定,随机

异质性大:随机

p值

p>0.05或p>0.1:固定

p<=0.05或p<=0.1ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值