混合模型是一个统计模型,包含fixed effects和random effects两种效应的混合。
当重复衡量(1)相同的统计单元,或(2)聚类,或(3)相关的统计单元时,混合模型尤其有效。
Ronald Fisher研究亲属间性状值的相关性时,引入random effects modes。1950年代,Charles Roy Henderson提出
(1)fixed effects的BLUE(best linear unbiased estimates)和
(2)random effects的BLUP(best linear unbiased predictions)。
随后,混合模型在统计研究中成为主流,包括计算maximum likelihood estimates,non-linear mixed effect modes,missing data in mixed effects modes,以及Bayesian estimation of mixed effects models等。
Fixed effects model
固定效应模型
应用前提是假定全部研究结果的方向与效应大小基本相同,即各独立研究的结果趋于一致,一致性检验差异无显著性。
因此,固定效应模型用于各独立研究间无差异,或差异较小的研究。
异质性小:固定,随机
异质性大:随机
p值
p>0.05或p>0.1:固定
p<=0.05或p<=0.1ÿ