【第十二周项目3】Dijkstra算法的验证

/*  
* Copyright (c)2017,烟台大学计算机与控制工程学院  
  
* 文件名称:Dijkstra算法的验证.cpp  
* 作    者:swz
* 完成日期:2017年11月23日  
 
  
* 问题描述:Dijkstra算法的验证。  
  
* 输入描述:无  
* 程序输出:测试数据  
*/    
  
//graph.h头文件代码  
  
#ifndef GRAPH_H_INCLUDED    
#define GRAPH_H_INCLUDED    
    
#include <stdio.h>    
#include <malloc.h>    
#define MAXV 100                //最大顶点个数    
#define INF 32767       //INF表示∞    
typedef int InfoType;    
    
    
//以下定义邻接矩阵类型    
typedef struct    
{    
    int no;                     //顶点编号    
    InfoType info;              //顶点其他信息,在此存放带权图权值    
} VertexType;                   //顶点类型    
    
    
typedef struct                  //图的定义    
{    
    int edges[MAXV][MAXV];      //邻接矩阵    
    int n,e;                    //顶点数,弧数    
    VertexType vexs[MAXV];      //存放顶点信息    
} MGraph;                       //图的邻接矩阵类型    
    
    
//以下定义邻接表类型    
typedef struct ANode            //弧的结点结构类型    
{    
    int adjvex;                 //该弧的终点位置    
    struct ANode *nextarc;      //指向下一条弧的指针    
    InfoType info;              //该弧的相关信息,这里用于存放权值    
} ArcNode;    
    
    
typedef int Vertex;    
    
    
typedef struct Vnode            //邻接表头结点的类型    
{    
    Vertex data;                //顶点信息    
    int count;                  //存放顶点入度,只在拓扑排序中用    
    ArcNode *firstarc;          //指向第一条弧    
} VNode;    
    
    
typedef VNode AdjList[MAXV];    //AdjList是邻接表类型    
    
    
typedef struct    
{    
    AdjList adjlist;            //邻接表    
    int n,e;                    //图中顶点数n和边数e    
} ALGraph;                      //图的邻接表类型    
    
    
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图    
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)    
//      n - 矩阵的阶数    
//      g - 要构造出来的邻接矩阵数据结构    
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵    
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表    
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G    
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g    
void DispMat(MGraph g);//输出邻接矩阵g    
void DispAdj(ALGraph *G);//输出邻接表G    
    
    
#endif // GRAPH_H_INCLUDED    
  
  
  
  
  
  
//graph.cpp文件代码  
  
  
#include "graph.h"    
#define MaxSize 100    
    
    
void Ppath(int path[],int i,int v)  //前向递归查找路径上的顶点    
{    
    int k;    
    k=path[i];    
    if (k==v)  return;          //找到了起点则返回    
    Ppath(path,k,v);            //找顶点k的前一个顶点    
    printf("%d,",k);            //输出顶点k    
}    
void Dispath(int dist[],int path[],int s[],int n,int v)    
{    
    int i;    
    for (i=0; i<n; i++)    
        if (s[i]==1)    
        {    
            printf("  从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);    
            printf("%d,",v);    //输出路径上的起点    
            Ppath(path,i,v);    //输出路径上的中间点    
            printf("%d\n",i);   //输出路径上的终点    
        }    
        else  printf("从%d到%d不存在路径\n",v,i);    
}    
void Dijkstra(MGraph g,int v)    
{    
    int dist[MAXV],path[MAXV];    
    int s[MAXV];    
    int mindis,i,j,u;    
    for (i=0; i<g.n; i++)    
    {    
        dist[i]=g.edges[v][i];      //距离初始化    
        s[i]=0;                     //s[]置空    
        if (g.edges[v][i]<INF)      //路径初始化    
            path[i]=v;    
        else    
            path[i]=-1;    
    }    
    s[v]=1;    
    path[v]=0;              //源点编号v放入s中    
    for (i=0; i<g.n; i++)               //循环直到所有顶点的最短路径都求出    
    {    
        mindis=INF;                 //mindis置最小长度初值    
        for (j=0; j<g.n; j++)       //选取不在s中且具有最小距离的顶点u    
            if (s[j]==0 && dist[j]<mindis)    
            {    
                u=j;    
                mindis=dist[j];    
            }    
        s[u]=1;                     //顶点u加入s中    
        for (j=0; j<g.n; j++)       //修改不在s中的顶点的距离    
            if (s[j]==0)    
                if (g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])    
                {    
                    dist[j]=dist[u]+g.edges[u][j];    
                    path[j]=u;    
                }    
    }    
    Dispath(dist,path,s,g.n,v);     //输出最短路径    
}    
    
    
int main()    
{    
    MGraph g;    
    int A[6][6]=    
    {    
        {0,50,10,INF,45,INF},    
        {50,0,15,INF,5,INF},    
        {20,INF,0,15,INF,INF},    
        {INF,20,INF,0,35,INF},    
        {INF,INF,INF,30,0,INF},    
        {INF,INF,INF,3,INF,0},    
    };    
    ArrayToMat(A[0], 6, g);    
    Dijkstra(g,0);    
    return 0;    
}  





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值