搜索结构之哈希----初识哈希

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sx2448826571/article/details/80345458

搜索结构之哈希

1>顺序搜索以及二叉树搜索树中,元素存储位置和元素各关键码之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。搜索的效率取决于搜索过程中元素的比较次数。
2>理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
3>当向该结构中:
插入元素时:根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素时:对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合{180,750,600,430,541,900,460}


用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

问题:按照上述哈希方式,向集合中插入元素443,会出现什么问题?

哈希冲突

对于两个数据元素的关键字:HashFun(Ki) == HashFun(Kj)

即不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

发生哈希冲突该如何处理呢?

哈希函数:

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:
哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
哈希函数计算出来的地址能均匀分布在整个空间中
哈希函数应该比较简单
【常见哈希函数】
直接定制法
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
优点:简单、均匀
缺点:需要事先知道关键字的分布情况
适合查找比较小且连续的情况

除留余数法
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key
% p(p<=m),将关键码转换成哈希地址

平方取中法

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;
再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
折叠法
折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表
长,取后几位作为散列地址
折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
随机数法
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数
通常应用于关键字长度不等时采用此法
数学分析法
设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均
匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分
布均匀的若干位作为散列地址。例如:
假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位
作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如
1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法
数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突.

处理哈希冲突---闭散列和开散列吐舌头吐舌头吐舌头请看下一篇哦




阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页