机器学习归一化(附Python实现源码)

本文介绍了机器学习中几种常见的数据归一化方法,包括Z-Score标准化、最大最小规范化、使用sklearn库的归一化以及平均值标准化,并提供了Python实现的源码示例。通过这些方法,可以将数据转换到统一的尺度,提升模型的训练效果。
摘要由CSDN通过智能技术生成

# -*- coding: utf-8 -*-
import inspect
import math
import numpy as np
from sklearn import preprocessing


def max_min_normalization(data_list):
    """
    利用最大最小数将一组数据进行归一化输出
    x_new = (x - min) / (max - min)
    :param data_list:
    :return:
    """
    normalized_list = []
    max_min_interval = max(data_list) - min(data_list)
    for data in data_list:
        data = float(data)
        new_data = (data - min(data_list)) / max_min_interval
        normalized_list.append(round(new_data, 3))

    return normalized_list


def mean_normalization(data_list):
    """
    利用平均数将一组数据进行标准化输出
    标准化的结果不一定是在0,1之间
    x_new = (x - mean) / (max - min)
    :param data_list:
    :return:
    """
    normalized_list = []
    mean 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值