# -*- coding: utf-8 -*-
import inspect
import math
import numpy as np
from sklearn import preprocessing
def max_min_normalization(data_list):
"""
利用最大最小数将一组数据进行归一化输出
x_new = (x - min) / (max - min)
:param data_list:
:return:
"""
normalized_list = []
max_min_interval = max(data_list) - min(data_list)
for data in data_list:
data = float(data)
new_data = (data - min(data_list)) / max_min_interval
normalized_list.append(round(new_data, 3))
return normalized_list
def mean_normalization(data_list):
"""
利用平均数将一组数据进行标准化输出
标准化的结果不一定是在0,1之间
x_new = (x - mean) / (max - min)
:param data_list:
:return:
"""
normalized_list = []
mean
机器学习归一化(附Python实现源码)
最新推荐文章于 2024-05-05 18:02:28 发布
本文介绍了机器学习中几种常见的数据归一化方法,包括Z-Score标准化、最大最小规范化、使用sklearn库的归一化以及平均值标准化,并提供了Python实现的源码示例。通过这些方法,可以将数据转换到统一的尺度,提升模型的训练效果。
摘要由CSDN通过智能技术生成