最近学习支持SVM,其中目标函数是一个有约束条件下的最优化问题。 这个问题要用拉格朗日乘子法进行推导。个人本来打算写一篇文章来解释这个。后来通过查询,发现网上有很多资料,把这些读了一遍,发现疑问都解决了。所以在这里把资料汇总一下,与大家分享。
学习资料
Understanding Lagrange Multipliers
视频学习:
要点摘抄:
处理步骤:
1. 构造拉格朗日函数
2. 解变量的偏导方程
3. 代入目标函数即可
适用场景:
等式约束条件
几何意义:
在极值点,优化函数的等高线、优化函数与约束方程的交线、约束方程的投影线(类似约束曲面的等高线,约束曲线)相切于一点
极值点满足的条件:
1、极值点在优化函数及约束方程上;
2、在极值点,优化函数的等高线、优化函数与约束方程交线、约束曲线相切,优化函数与约束方程交线的梯度(导数)为0