- 算法描述
前面所描述的插入排序,归并排序,快速排序等都是比较排序。比较排序指的是,在排序的最终结果中,各元素的次序依赖于它们之间的比较顺序。
计数排序假设n个输入元素中的每一个都是从0到k区间内的一个整数,其中k为某个整数。其基本思想是:对一个输入元素x,确定小于等于x的元素个数,利用这一信息可以直接把x放到它在输出数组中正确的位置上。例如,有17个元素小于x,则x就应该在第18个输出位置上。 - 算法实现
package sxd.learn.algorithms;
/**
*
* date Mar 22, 2015
* desc CountingSort
*/
public class CountingSort {
public static void main(String[] args){
int[] A = {2, 5, 3, 0, 2, 3, 0 ,3};
int[] B = new int[A.length];
COUNTING_SORT(A, B, 5);
for(int i : B){
System.out.print(i + " ");
}
}
/**
* @param A 输入的原数组
* @param B 输出的目地数组
* @param k iArray中的数不大于k,即 iArray[i] <=k
*/
public static void COUNTING_SORT(int[] A, int[] B, int k){
int[] C = new int[k + 1];
for(int i = 0; i < C.length; i++){
C[i] = 0;
}
for(int i = 0; i < A.length; i++){
C[A[i]]++;
}
//目前C[i]中保存的是等于i的元素的个数
for(int i = 1; i < C.length; i++){
C[i] = C[i] + C[i-1];
}
//目前C[i]中保存的的是小于等于i元素的个数
for(int i = 0; i < A.length; i++){
B[--C[A[i]]] = A[i];
}
}
}
3. 算法分析
计数排序的时间复杂度为O(n),计数排序使用输入元素的实际值来确定其在数组中位置。计数排序是稳定的,具有相同值的元素在输出数组中的相对次序与他们在输入数组中的相对次序相同。