图的遍历

图的遍历

对于图的遍历,需要科学地设计遍历方案,通常有两种遍历次序方案:深度优先遍历和广度优先遍历。

深度优先遍历

深度优先遍历( Depthfirstsearch),也有称为深度优先搜索,简称为DFS。

  • 我们可以约定右手原则:在没有碰到重复顶点的情况下,分叉路口始终是向右手边走,每路过一个顶点就做一个记号。深度优先遍历其实就是一个递归的过程。
  • 它的具体思想类似找钥匙方案,无论从哪一间房间开始都可以,将间内的墙角床头柜、床上、床下、衣柜、电视柜等挨个寻找,做到不放过任何一个死角,当所有的抽屉、储藏柜中全部都找遍,接着再寻找下一个房间。

在这里插入图片描述

在这里插入图片描述

一些相关的知识点
  • 回溯法
    之前我们谈过回溯法,还是那句话,指导思想很简单,就是一条路走到黑,碰壁了再回来一条路走到黑,一般和递归可以很好的搭配使用,还有深度优先搜索(DFS)。
  • 密尔顿路径
    一图G中的哈密尔顿路径指的是经过图G中每个顶点且只经过一次的一条轨迹。如果这条轨迹是一条闭合的路径(从起点出发不重复地遍历所有点后仍能回到起始点),那么这条路径称为哈密尔顿回路。
广度优先遍历

广度优先遍历( Breadthfirstsearch),又称为广度优先搜索,简称BFS。

  • 如果以之前我们找钥匙的例子来讲,运用深度优先遍历意味着要先彻底查找完一个房间再开始另一个房间的搜索。
    但我们知道,钥匙放在沙发地下等犄角旮旯的可能性极低,因此我们运用新的方案:先看看钥匙是否放在各个房间的显眼位置,如果没有,再看看各个房间的抽屉有没有。这样逐步扩大查找的范围的方式我们称为广度优先遍历。

在这里插入图片描述
可以用队列来实现
在这里插入图片描述

【问题描述】 从中某个顶点出发访问中所有顶点,且使得每一顶点仅被访问一次,这个过程称为遍历遍历是从中某个顶点出发,沿着某条搜索路径对中其余每个顶点进行访问, 并且使中的每个顶点仅被访问一次的过程。 遍历运算中最重要的运算,也是的基本运算之一,的许多运算都是以遍历为基础的。试编写一个程序,完成对遍历。 【基本要求】 1.以邻接矩阵为存储结构,实现无向的深度优先遍历和广度优先遍历。 2.分别输出每种遍历下的结点访问序列.从中某个顶点出发,沿着某条搜索路径对中每个顶点各做一次且仅做一次访问。它是许多的算法的基础。 【遍历介绍】 一、基本概念 遍历: 中某个顶点出发访问中所有顶点,且使得每一顶点仅被访问一次,这个过程称为遍历遍历是从中某个顶点出发,沿着某条搜索路径对中其余每个顶点进行访问, 并且使中的每个顶点仅被访问一次的过程。 遍历运算中最重要的运算,也是的基本运算之一,的许多运算都是以遍历为基础的。 二、 分类 按照搜索途径的不同,遍历可分为:深度优先遍历(Depth-First Traverse)和广度优先遍历(Breadth-First Traverse)两大类。深度优先遍历和广度优先遍历是最为重要的两种遍历的方法。 深度优先遍历 (Depth-First Traverse) 特点:尽可能先对纵深方向的顶点进行访问 1.深度优先遍历的递归定义 假设给定G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至中所有顶点均已被访问为止。 的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历就很自然地称之为的深度优先遍历。 2. 深度优先搜索的过程 a 基本思想: 首先访问中某一个指定的出发点Vi; 然后任选一个与顶点Vi相邻的未被访问过的顶点Vj; 以Vj为新的出发点继续进行深度优先搜索,直至中所有顶点均被访问过。 b具体过程: 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若G是连通,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。
2. 系统设计 1.用到的抽象数据类型的定义 的抽象数据类型定义: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集 数据关系R: R={VR} VR={<v,w>|v,w∈V且P(v,w),<v,w>表示从v到w的弧, 谓词P(v,w)定义了弧<v,w>的意义或信息} 基本操作P: CreatGraph(&G,V,VR) 初始条件:V是的顶点集,VR是中弧的集合 操作结果:按V和VR的定义构造G DestroyGraph(&G) 初始条件:G存在 操作结果:销毁G InsertVex(&G,v) 初始条件:G存在,v和中顶点有相同特征 操作结果:在G中增添新顶点v …… InsertArc(&G,v,w) 初始条件:G存在,v和w是G中两个顶点 操作结果:在G中增添弧<v,w>,若G是无向的则还增添对称弧<w,v> …… DFSTraverse(G,Visit()) 初始条件:G存在,Visit是顶点的应用函数 操作结果:对进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 BFSTraverse(G,Visit()) 初始条件:G存在,Visit是顶点的应用函数 操作结果:对进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 }ADT Graph 栈的抽象数据类型定义: ADT Stack{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={<ai-1,ai>|ai-1,ai∈D,i=2,…,n} 约定an端为栈顶,ai端为栈底 基本操作: InitStack(&S) 操作结果:构造一个空栈S DestroyStack(&S) 初始条件:栈S已存在 操作结果:将S清为空栈 StackEmpty(S) 初始条件:栈S已存在 操作结果:若栈S为空栈,则返回TRUE,否则FALSE …… Push(&S,e) 初始条件:栈S已存在 操作结果:插入元素e为新的栈顶元素 Pop(&S,&e) 初始条件:栈S已存在且非空 操作结果:删除S的栈顶元素,并用e返回其值 StackTraverse(S,visit()) 初始条件:栈S已存在且非空 操作结果:从栈底到栈顶依次对S的每个数据元素调用函数visit(),一旦visit()失败,则操作失效 }ADT Stack 队列的抽象数据类型定义: ADT Queue{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:Rl={<ai-1,ai>|ai-1,ai∈D,i=2,…,n} 约定其中ai端为队列头,an端为队列尾。 基本操作: InitQueue(&Q) 操作结果:构造一个空队列Q DestroyQueue(&Q) 初始条件:队列Q已存在 操作结果:队列Q被销毁,不再存在 QueueEmpty(Q) 初始条件:队列Q已存在 操作结果:若Q为空队列,则返回TRUE,否则FALSE …… EnQueue(&Q,e) 初始条件:队列Q已存在 操作结果:插入元素e为Q的新的队尾元素 DeQueue(&Q,&e) 初始条件:Q为非空队列 操作结果:删除Q的队头元素,并用e返回其值 }ADT Queue 2.主程序的流程: 调用CreateDN函数创建的邻接表G; 调用PrintDN函数输出邻接表G; 调用DFSTraverse函数深度优先遍历; 调用BFSTraverse函数广度优先遍历
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值