【教程】设置GPU与CPU的核绑(亲和力Affinity)

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~


        简单来说,核绑,或者叫亲和力,就是将某个GPU与指定CPU核心进行绑定,从而尽可能提高效率。

        推荐与进程优先级一起用:

【教程】Linux设置进程的优先级-CSDN博客文章浏览阅读420次,点赞17次,收藏7次。对于时间敏感的任务调整进程优先级很有必要https://blog.csdn.net/sxf1061700625/article/details/139721354


        可以看NVIDIA推荐GPU与哪些CPU绑定:

nvidia-smi topo -m


        Python中的设置代码参考:

def set_cpu_affinity(rank, num_cores_per_gpu=4, start_core_index=0):
    num_cores = psutil.cpu_count(logical=True)
    core_ids = list(range(num_cores))
    # 计算起始和结束核的索引
    start_core = start_core_index + rank * num_cores_per_gpu
    end_core = start_core + num_cores_per_gpu
    # 获取要绑定的CPU核列表
    cpu_affinity = core_ids[start_core:end_core]
    # 设置当前进程的CPU核绑定
    p = psutil.Process(os.getpid())
    p.cpu_affinity(cpu_affinity)
    print(f">> GPU {rank} is bound to CPU cores {cpu_affinity}")

        用法示例:

set_cpu_affinity(rank)

        效果演示:

htop

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小锋学长生活大爆炸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值