N*N匹马,N个赛道,求出最快N匹马的解法

入门级:81匹马,9个赛道,不计时,最少要赛几场可以求出最快四匹马?

首先:分为9组分别进行比赛后得到每一组的比赛名次,比赛场次:9;
然后:将9组的每组第一名比赛,得到第一名,肯定是所有马的第一名;比赛场次:1
最后:剩下马中有资格角逐前四名的马有A2、A3、A4、B1、B2、B3、C1、C2、D1,刚好有9匹马,在进行一场比赛就可以了,比赛场次:1

所以最少进行11场比赛。

提高级:问题是这样的:一共有25匹马,有一个赛场,赛场有5个赛道,就是说最多同时可以有5匹马一起比赛。假设每匹马都跑的很稳定,不用任何其他工具,只通过马与马之间的比赛,试问最少 得比多少场才能知道跑得最快的5匹马。
注意: "假设每匹马都跑的很稳定" 的意思是在上一场比赛中A马比B马快,则下一场比赛中A马依然比B马快。
稍微想一下,可以采用一种 竞标赛排序(Tournament Sort)的思路。 见《选择排序 》
(1) 首先将25匹马分成5组,并分别进行5场比赛之后得到的名次排列如下:
              A组: [A1 A2 A3   A4 A5]
              B组: [B1 B2 B3   B4 B5]
              C组: [C1 C2 C3 C4 C5]
              D组: [D1 D2 D3 D4 D5]
              E组: [E1 E2 E3   E4 E5]
      其中,每个小组最快的马为[A1、B1、C1、D1、E1]。
(2) 将[A1、B1、C1、D1、E1]进行第6场,选出第1名的马,不妨设 A1>B1>C1>D1>E1. 此时第1名的马为A1。
(3) 将[A2、B1、C1、D1、E1]进行第7场,此时选择出来的必定是第2名的马,不妨假设为B1。因为这5匹马是除去A1之外每个小组当前最快的马。
(3) 进行第8场,选择[A2、B2、C1、D1、E1]角逐出第3名的马。
(4) 依次类推,第9,10场可以分别决出第4,5名的吗。
因此,依照这种竞标赛排序思想,需要10场比赛是一定可以取出前5名的。
仔细想一下,如果需要减少比赛场次,就一定需要在某一次比赛中同时决出2个名次,而且每一场比赛之后,有一些不可能进入前5名的马可以提前出局。 当然要做到这一点,就必须小心选择每一场比赛的马匹。我们在上面的方法基础上进一步思考这个问题,希望能够得到解决。
(1) 首先利用5场比赛角逐出每个小组的排名次序是绝对必要的。
(2) 第6场比赛选出第1名的马也是必不可少的。假如仍然是A1马(A1>B1>C1>D1>E1)。那么此时我们可以得到一个重要的结论:有一些马在前6场比赛之后就决定出局的命运了(下面蓝色字体标志出局)。
     A组: [A1  A2  A3   A4  A5]
     B组: [B1  B2   B3   B4  B5 ]
     C组: [C1  C2  C3   C4  C5 ]
     D组: [D1 D2  D3   D4  D5]
     E组:  [E1  E2  E3    E4  E5 ]
(3) 第7场比赛是关键,能否同时决出第2,3名的马呢?我们首先做下分析:
     在上面的方法中,第7场比赛[A2、B1、C1、D1、E1]是为了决定第2名的马。但是在第6场比赛中我们已经得到(B1>C1>D1>E1),试问?有B1在的比赛,C1、D1、E1还有可能争夺第2名吗? 当然不可能,也就是说第2名只能在A2、B1中出现。实际上只需要2条跑道就可以决出第2名,剩下C1、D1、E1的3条跑道都只能用来凑热闹的吗?
     能够优化的关键出来了,我们是否能够通过剩下的3个跑道来决出第3名呢?当然可以,我们来进一步分析第3名的情况?
     ● 如果A2>B1(即第2名为A2),那么根据第6场比赛中的(B1>C1>D1>E1)。 可以断定第3名只能在A3和B1中产生。
     ● 如果B1>A2(即第2名为B1),那么可以断定的第3名只能在A2、B2、C1 中产生。
     好了,结论也出来了,只要我们把[A2、B1、A3、B2、C1]作为第7场比赛的马,那么这场比赛的第1,2名一定是整个25匹马中的第2,3名。
     我们在这里列举出第7场的2,3名次的所有可能情况:
     ① 第2名=A2,第3名=A3
     ② 第2名=A2,第3名=B1
     ③ 第2名=B1,第3名=A2
     ④ 第2名=B1,第3名=B2
     ⑤ 第2名=B1,第3名=C1
(4) 第8场比赛很复杂,我们要根据第7场的所有可能的比赛情况进行分析。
      ① 第2名=A2,第3名=A3。那么此种情况下第4名只能在A4和B1中产生。
           ● 如果第4名=A4,那么第5名只能在A5、B1中产生。
           ● 如果第4名=B1,那么第5名只能在A4、B2、C1中产生。
           不管结果如何,此种情况下,第4、5名都可以在第8场比赛中决出。其中比赛马匹为[A4、A5、B1、B2、C1]
      ② 第2名=A2,第3名=B1。那么此种情况下第4名只能在A3、B2、C1中产生。
           ● 如果第4名=A3,那么第5名只能在A4、B2、C1中产生。
           ● 如果第4名=B2,那么第5名只能在A3、B3、C1中产生。
           ● 如果第4名=C1,那么第5名只能在A3、B2、C2、D1中产生。
           那么,第4、5名需要在马匹[A3、B2、B3、C1、A4、C2、D1]七匹马中产生,则必须比赛两场才行,也就是到第9场角逐出全部的前5名。
      ③ 第2名=B1,第3名=A2。那么此种情况下第4名只能在A3、B2、C1中产生。
           情况和②一样,必须角逐第9场
      ④ 第2名=B1,第3名=B2。 那么此种情况下第4名只能在A2、B3、C1中产生。
           ● 如果第4名=A2,那么第5名只能在A3、B3、C1中产生。
           ● 如果第4名=B3,那么第5名只能在A2、B4、C1中产生。
           ● 如果第4名=C1,那么第5名只能在A2、B3、C2、D1中产生。
            那么,第4、5名需要在马匹[A2、B3、B4、C1、A3、C2、D1]七匹马中产生,则必须比赛两场才行,也就是到第9场角逐出全部的前5名。
        ⑤ 第2名=B1,第3名=C1。那么此种情况下第4名只能在A2、B2、C2、D1中产生。
            ● 如果第4名=A2,那么第5名只能在A3、B2、C2、D1中产生。
            ● 如果第4名=B2,那么第5名只能在A2、B3、C2、D1中产生。
            ● 如果第4名=C2,那么第5名只能在A2、B2、C3、D1中产生。
            ● 如果第4名=D1,那么第5名只能在A2、B2、C2、D2、E2中产生。
             那么,第4、5名需要在马匹[A2、B2、C2、D1、A3、B3、C3、D2、E1]九匹马中产生,因此也必须比赛两场,也就是到第9长决出胜负。
总结:最好情况可以在第8场角逐出前5名,最差也可以在第9场搞定。


设f(n,k)表示n*n匹马,n个赛道,要找出前k名所需要比赛的场数。

当k = 1时,即要找出最快的那匹马。很简单,把所有马分成n组,每组各赛一次,选出每组第一名再赛一次,得到的第一名就是最快的马,f(n,k) = n + 1。

当k > 1 && k <= n时,同样将所有马分成n组,g[1], g[2],...,g[n], 每组比赛一次,得到每个组内的排名。不妨设第 i 组的排名就是g[i][1] > g[i][2] > g[i][3] > ... > g[i][n] (实力从强到弱)。再将各组第一名选出来赛一场,不妨设比赛结果为g[1][1] > g[2][1] > g[3][1] > ... > g[n][1],那么g[1][1]即为第1名。

强    ------->   弱

 |   g1: 1 2 3 4 ... n

 |   g2: 1 2 3 4 ... n

 |   ...

弱  gn: 1 2 3 4 ... n

第2名只能从g[1][2],g[2][1]中选。如果第2名是g[1][2],那第3名就要从g[1][3],g[2][1]中选;如果第2名是g[2][1],那第3名就要从g[1][2],g[2][2],g[3][1]中选,这种情况下需要比赛的马更多。一般地,如果第i名(i >= 1 && i <= k)选出的是g[i][1]时,选第i+1名就需要从g[1][2], g[2][2], g[i][2], g[i+1][1]中选,这种情况下选出一个名次所需要参赛的马最多,选第i+1名就需要i+1匹马参赛。于是选第2名,第3名,第4名,...,第k名所需的最多参赛马匹数为2,3,4,...,k。选第2到第k名所需要安排的比赛场数就相当于将质量为2,3,4, ..., k的球放入最大承重为n的桶中,要求按顺序放入,最少需要的桶的个数。比如,k=5, n=5,球重量为2,3,4,5,那么2,3放入一个桶,4,5各放一个桶,需要3个桶。将质量为2到k的球放入承重为n的桶中所需的最少桶数记为w(n,k),那么 f(n,k) = n + 1 + w(n,k);

当k > n时,每选出一个大于n的名次,就需要n匹马比赛一次,比赛场次数加1。那么 f(n,k) = n + 1 + w(n,n) + k - n;

所以,如果k = 1, f(n,k) = n + 1

        如果k>1 && k <= n, f(n,k) = n + 1 + w(n,k)

        如果k>n, f(n,k) = n + 1 + w(n,k) + k - n

应用:36匹马,6赛道,找出前6名需要的比赛场次为f(6,6) = 6 + 1 + w(6,6)。w(6,6)为将2,3,4,5,6依次放入容量为6的桶需要的最少桶数4。最少需要11场比赛。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值