蓝桥杯 裸最短路径

 



  算法训练 最短路  
时间限制:1.0s   内存限制:256.0MB
       
问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。



我感觉这题目有些瑕疵。说好没有负环的,第一个样例就成了一个圈。


开始用Dijkstra算法敲了一下,但是不出结果,并且敲回车没反应,在while循环中放入输出操作、、

没错,死循环了。

再看了看输入,果断换成Ford。敲了一遍过了

以下是AC代码。注释部分是Dijkstra最短路径部分。可以对比一下二者之间的区别。



#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <map>
#include <set>
#include <sstream>
#include <queue>
#include <stack>
#define INF 0x3f3f3f3f
#define mem(a,b) memset(a,b,sizeof(a));
#define For(a,b) for(int i = a;i<b;i++)
#define ll long long
#define MAX_N 100010

using namespace std;
struct edge
{
    int f;
    int to;
    int cost;
}p[200005];
vector <edge> G[200005];
int d[200005];
int n,m;
//typedef pair<int,int> p;
//void Dijkstra(int s)
//{
//    priority_queue<p, vector<p>, greater<p> >que;
//    fill(d,d+n,INF);
//    d[s] = 0;
//    que.push(p(0,s));
//    while(!que.empty())
//    {
//        cout<<"1"<<endl;
//        p pp = que.top();
//        que.pop();
//        int v = pp.second;
//        if(d[v] < pp.first) continue;
//        for(int i = 0; i<G[v].size(); i++)
//        {
//            edge e = G[v][i];
//            if(d[e.to] > d[v] + e.cost)
//            {
//                d[e.to] = d[v] + e.cost;
//                que.push(p(d[e.to],e.to));
//            }
//        }
//    }
//}

void Ford(int s)
{
    fill(d+1,d+n+1,INF);
    d[s] = 0;

    while(1)
    {
        bool flag = false;
        for(int i = 0; i<m; i++)
        {
            edge e = p[i];
            if(d[e.f] != INF && d[e.to] > d[e.f] + e.cost)
            {
                d[e.to] = d[e.f] + e.cost;
                flag = true;
            }
        }
        if(!flag) break;
    }
}

int main()
{
    scanf("%d %d",&n,&m);
//    for(int i = 0; i<m; i++)
//    {
//        int v,u,cost;
//        scanf("%d %d %d",&v,&u,&cost);
//        edge t,h;
//
//        t.to = u;
//        t.cost = cost;
//        G[v].push_back(t);
//
//        h.to = v;
//        h.cost = cost;
//        G[u].push_back(h);
//    }
//    Dijkstra(1);
    for(int i = 0 ;i<m; i++)
    {
        int v,u,cost;
        scanf("%d%d%d",&v,&u,&cost);

        p[i].f = v, p[i].to = u, p[i].cost = cost;

    }
    Ford(1);
    for(int i = 2; i<=n; i++)
    {
        printf("%d\n",d[i]);
    }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值