算法训练 最短路
时间限制:1.0s 内存限制:256.0MB
问题描述
给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。
输入格式
第一行两个整数n, m。
接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。
输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
-2
数据规模与约定
对于10%的数据,n = 2,m = 2。
对于30%的数据,n <= 5,m <= 10。
对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。
我感觉这题目有些瑕疵。说好没有负环的,第一个样例就成了一个圈。
开始用Dijkstra算法敲了一下,但是不出结果,并且敲回车没反应,在while循环中放入输出操作、、
没错,死循环了。
再看了看输入,果断换成Ford。敲了一遍过了
以下是AC代码。注释部分是Dijkstra最短路径部分。可以对比一下二者之间的区别。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <map>
#include <set>
#include <sstream>
#include <queue>
#include <stack>
#define INF 0x3f3f3f3f
#define mem(a,b) memset(a,b,sizeof(a));
#define For(a,b) for(int i = a;i<b;i++)
#define ll long long
#define MAX_N 100010
using namespace std;
struct edge
{
int f;
int to;
int cost;
}p[200005];
vector <edge> G[200005];
int d[200005];
int n,m;
//typedef pair<int,int> p;
//void Dijkstra(int s)
//{
// priority_queue<p, vector<p>, greater<p> >que;
// fill(d,d+n,INF);
// d[s] = 0;
// que.push(p(0,s));
// while(!que.empty())
// {
// cout<<"1"<<endl;
// p pp = que.top();
// que.pop();
// int v = pp.second;
// if(d[v] < pp.first) continue;
// for(int i = 0; i<G[v].size(); i++)
// {
// edge e = G[v][i];
// if(d[e.to] > d[v] + e.cost)
// {
// d[e.to] = d[v] + e.cost;
// que.push(p(d[e.to],e.to));
// }
// }
// }
//}
void Ford(int s)
{
fill(d+1,d+n+1,INF);
d[s] = 0;
while(1)
{
bool flag = false;
for(int i = 0; i<m; i++)
{
edge e = p[i];
if(d[e.f] != INF && d[e.to] > d[e.f] + e.cost)
{
d[e.to] = d[e.f] + e.cost;
flag = true;
}
}
if(!flag) break;
}
}
int main()
{
scanf("%d %d",&n,&m);
// for(int i = 0; i<m; i++)
// {
// int v,u,cost;
// scanf("%d %d %d",&v,&u,&cost);
// edge t,h;
//
// t.to = u;
// t.cost = cost;
// G[v].push_back(t);
//
// h.to = v;
// h.cost = cost;
// G[u].push_back(h);
// }
// Dijkstra(1);
for(int i = 0 ;i<m; i++)
{
int v,u,cost;
scanf("%d%d%d",&v,&u,&cost);
p[i].f = v, p[i].to = u, p[i].cost = cost;
}
Ford(1);
for(int i = 2; i<=n; i++)
{
printf("%d\n",d[i]);
}
return 0;
}