POJ 1845

大致题意:

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。

 

解题思路:

要求有较强 数学思维 的题

应用定理主要有三个:

要求有较强 数学思维 的题

应用定理主要有三个:

(1)   整数的唯一分解定理:

      任意正整数都有且只有一种方式写出其素因子的乘积表达式。

      A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

 

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

(自己写的:对素数(素数p0,p1,......p(n-1),pn)进行取余,pi*pi>=a时结束
首先从第一个素数p1开始,当p%p1==0时对该素数进行记录,说明素数p1可以组成p分解后的素因子(p%p1!=0时结束),对下一个素数ai进行判断
当p%pi==0时开始记录循环的次数,然后p/=pi进行循环(p%p1!=0时结束对素数pi的处理,进行对下一个素数pi+1进行处理)直到p==1时结束循环。)

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.       故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


2:A^B的所有约数之和为:

sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:

(1)若n为奇数,一共有偶数项,则:
       1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) *(1 + p^(n/2+1))(快速幂运算)

上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了后半部分为幂次式,将在下面第4点讲述计算方法。

(2)若n为偶数,一共有奇数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

   上式红色加粗的前半部分恰好就是原式的一半,依然递归求解

4、

点击查看快速幂运算讲解

#include <cstring>
using namespace std;
int s[10010];//用于存储分解后的素数因子
int n[10010];//用于存储分解后的素数因子的幂指数的值
const int mod=9901;
long long pow(long long p,long long n)//快速幂运算
{
	long long ans=1;
	while(n)
	{
		if(n&1)
		ans=(ans*p)%mod;
		n/=2;
		p=(p*p)%mod;
	}
	return ans;
}
long long sum(long long  a,long long  n)//等比数列求和
{
	if(n==0)
		return 1;
		if(n&1)//n是奇数的情况if(n&1)等于if(n%2==1)
			return (sum(a,n/2)*(pow(a,n/2+1)+1))%mod;
		else
			return (sum(a,n/2-1)*(1+pow(a,n/2+1))+pow(a,n/2))%mod;
}
int main()
{
	long long  a,b;
	int i,j;
	while(cin>>a>>b)
	{
		int k=0;
		for(i=2;i*i<=a;)//结束条件
		{
			if(a%i==0)
				s[k]=i;
			n[k]=0;
			while(a%i==0)//判断循多少次,即幂指数的值
			{
				n[k]+=1;
				a/=i;
			}
			k++;
			if(i==2)//奇偶法求素数因子,(但是自己感觉这种方法有点BUG例如9不是素数,但着这种方法会把9计算进去,不如用素数打表的方法,但是筛发打表又会超时)
				i++;
			else
				i+=2;//也可以在开头用for(i=2;i*i<a;i==2?i++:i+=2)语句进行判断
		}
		if(a!=1)//当输入的a本身就是素数的处理
		{
			s[k]=a;
			n[k++]=1;
		}
	long long ans=1;
		for(i=0;i<k;i++)
			ans=(ans%mod*(sum(s[i],n[i]*b)%mod))%mod;//用到了(3)同于模公式(a*b)%m=(a%m*b%m)%m
		cout<<ans<<endl;
	}
	return 0;
}

用素数打表法把素数求出来:

#include<iostream>
#include <cstring>
#define MAX 7500//题目中给出的a b<50000000,所一素数打表MAX到7500(大约)就行
using namespace std;
int s[10010];//用于存储分解后的素数因子
int n[10010];//用于存储分解后的素数因子的幂指数的值
const int mod=9901;
long long primer[MAX],primerNum[MAX];
int num;
long long pow(long long p,long long n)
{
	long long ans=1;
	while(n)
	{
		if(n&1)
		ans=(ans*p)%mod;
		n/=2;
		p=(p*p)%mod;
	}
	return ans;
}
long long sum(long long  a,long long  n)
{
        if(n==0)
		return 1;
		if(n&1)//n是奇数的情况if(n&1)等于if(n%2==1)
			return (sum(a,n/2)*(pow(a,n/2+1)+1))%mod;
		else
			return (sum(a,n/2-1)*(1+pow(a,n/2+1))+pow(a,n/2))%mod;
}

int main()
{
	long long  a,b;
	int i,j;
	memset(primer,1,sizeof(primer));
	for(i=2;i<MAX;i++)//一个素数的倍数必然不是素数,就把他的倍数打掉
		for(int j=i+i;j<MAX;j+=i)
			primer[j]=0;
		for(i=2;i<MAX;i++)
			if(primer[i])
				primerNum[num++]=i;
			while(cin>>a>>b)
			{
		        int k=0;
			for(i=0;primerNum[i]*primerNum[i]<=a;i++)
			{
			if(a%primerNum[i]==0)
				s[k]=primerNum[i];
			        n[k]=0;
			while(a%primerNum[i]==0)//判断循多少次,即幂指数的值
			{
				n[k]+=1;
				a/=primerNum[i];
			}
			k++;
		   }
            if(a!=1)//当输入的a本身就是素数的处理
            {
            s[k]=a;
            n[k++]=1;
            }
            long long ans=1;
            for(i=0;i<k;i++)
			ans=(ans%mod*(sum(s[i],n[i]*b)%mod))%mod;//用到了(3)同于模公式(a*b)%m=(a%m*b%m)%m
		    cout<<ans<<endl;
            }
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值