技巧
小天位
这个作者很懒,什么都没留下…
展开
-
错排问题
错排问题:考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;第二步,放编号为k的元素,这时有两种情况...原创 2018-11-30 21:21:22 · 1118 阅读 · 0 评论 -
【递推DP&技巧 hdu 2050 折线分割平面】
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。Input输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。Output对于每个测试实例,请输出平面的最大分割数,...原创 2018-11-30 21:53:20 · 196 阅读 · 0 评论 -
【杜教BM】
解决线性递推求项 #include <bits/stdc++.h>#define rep(i,a,n) for (long long i=a;i<n;i++)#define per(i,a,n) for (long long i=n-1;i>=a;i--)#define pb push_back#define mp make_pair#define all...原创 2018-12-01 07:03:16 · 538 阅读 · 0 评论 -
【HDU2582 关于 gcd( C[n][1],C[n][2],C[n][3],........C[n][n-1) 】
给出公式Gcd(n)=gcd(C[n][1],C[n][2],……,C[n][n-1]),求f(n)= Gcd(3)+Gcd(4)+…+Gcd(i)+…+Gcd(n)。关于组合数的最大公约数:gcd(C[n][1],C[n][2],C[n][3],........C[n][n-1)当n 只有一个素数因子的时候,gcd=素数因子当n 有多个素数因子的时候,gcd=1 #inclu...原创 2018-12-01 17:56:46 · 218 阅读 · 0 评论 -
伯努利不等式
伯努利不等式:(1+x1+x2+x3....+xn)<=(1+x1)(1+x2)(1+x3)...(1+xn)对实数x>-1 当n>=1: (1+x)^n>=1+xn 当 0<=n<=1 (1+x)^n<=1+xn 当n=1时等号成立原创 2018-12-02 08:30:38 · 9198 阅读 · 1 评论 -
HDU 6112黑色星期五 蓝桥基拉姆森公式
若某个月13号恰好是星期五,则这一天被称为黑色星期五。已知某年的一月一日是星期w,并且这一年是闰年,求出这一年所有13号那天是星期5的月份,按从小到大的顺序输出月份数字。(w=1..7)输入输入有多组,每组一行且为一个整数w, 指该年的一月一日是星期w。(1<=w<=7)输出每组数据输出一行,从小到大输出具有黑色星期五的月份,月份与月份之间用空格隔开。若没有月份具有黑色星期五,则...原创 2018-03-06 21:14:52 · 534 阅读 · 0 评论 -
牛顿迭代法(Newton's Method)
高次方程没有通解,可以依靠牛顿迭代法来求解。五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。但是,没有王屠夫难道非得吃带毛猪?工作生活中还是有诸多求解高次方程的真实需求(比如行星的轨道计算,往往就是涉及到很复杂的高次方程),这日子可怎么过下去啊?没有根式解不意味着方程解不出来,数学家也提供了很多方法,牛顿迭代法就是其中一种。http...原创 2019-03-30 23:37:29 · 1911 阅读 · 0 评论 -
leetcode279 拉格朗日四平方和定理
给定正整数n,找到若干个完全平方数(比如1, 4, 9, 16, ...)使得它们的和等于n。你需要让组成和的完全平方数的个数最少。输入: n = 12 输出: 3 解释: 12 = 4 + 4 + 4.拉格朗日四平方和定理:1、对于任意一个正整数都可以表示成至多四个整数的平方和(把0考虑进去了也) 下面剪枝性的来找对任意正整数n可以表示成多少几个整数的平方和2、 若k%4=0...原创 2019-03-27 21:21:59 · 876 阅读 · 0 评论