poj 3280Cheapest Palindrome

本文探讨了如何通过插入或删除字符将一个字符串转化为回文串,并使其总成本最低的问题。利用动态规划的方法,通过定义状态转移方程,有效地解决了这一问题。

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M 
Line 2: This line contains exactly M characters which constitute the initial ID string 
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

题意:给出一个由m中字母组成的长度为n的串,给出m种字母添加和删除花费的代价,求让给出的串变成回文串的代价。

题解:

我们知道求添加最少的字母让其回文是经典dp问题,转化成LCS求解。这个是一个很明显的区间dp
我们定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价。
那么对于dp【i】【j】有三种情况
首先:对于一个串如果s【i】==s【j】,那么dp【i】【j】=dp【i+1】【j-1】
其次:如果dp【i+1】【j】是回文串,那么dp【i】【j】=dp【i+1】【j】+min(add【i】,del【i】);

在一篇博客上看看到了这个:

因为dp[i][j]需要借用i+1时的结果和j-1时的结果。

博主用的是 i需要反向枚举,j需要正向枚举 循环实现的,

看的其他的博主写的(代码2)也可以,自己可以看懂这个由小区间-->大区间的结构,,还写不出来

还有那个dp初值问题,感觉dp的这个状态就和上一个状态有关系,赋值在这儿无所谓吧?

#include <iostream>
#include <cstring>
//#define inf 1<<20
using namespace std;
int dp[2500][2500],mincost[200];
    char s[2500],c;
int main()
{

    int n,m,add,del;
    cin>>n>>m>>s;
    for(int i=0;i<n;++i)
    {
        cin>>c>>add>>del;
        mincost[c]=min(add,del);
    }
  //  memset(dp,inf,sizeof(dp));
    for(int i=m-1;i>=0;--i)
        for(int j=i+1;j<m;++j)
    {

        if(s[i]==s[j])
            dp[i][j]=dp[i+1][j-1];
        else
        {
            //dp[i][j]=min(dp[i+1][j]+mincost[s[i]],dp[i][j]);
           // dp[i][j]=min(dp[i][j-1]+mincost[s[j]],dp[i][j]);
    dp[i][j] = min(dp[i+1][j]+mincost[s[i]],dp[i][j-1]+mincost[s[j]]);
        }
    }
    cout<<dp[0][m-1]<<endl;
       return 0;

}
代码2:
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e8
using namespace std;
int dp[2020][2020];
int main()
{
    int n,m,vis[200];
    while(~scanf("%d%d",&n,&m))
    {
        char a[2020];
        scanf("%s",a);
        int x,y;
        char z;
        for(int i=0;i<n;i++)
        {
            cin>>z>>x>>y;
            vis[z]=min(x,y);
        }
        for(int j=1;j<m;j++)
        {
            for(int i=j-1;i>=0;i--)
                {
                    if(a[i]==a[j])
                        dp[i][j]=dp[i+1][j-1];
                    else {
                        dp[i][j]=min(dp[i+1][j]+vis[a[i]],dp[i][j-1]+vis[a[j]]);
                    }
                }
        }
        printf("%d\n",dp[0][m-1]);
    }
    return 0;
}
关于 阿里云盘CLI。仿 Linux shell 文件处理命令的阿里云盘命令行客户端,支持JavaScript插件,支持同步备份功能,支持相册批量下载。 特色 多平台支持, 支持 Windows, macOS, linux(x86/x64/arm), android, iOS 等 阿里云盘多用户支持 支持备份盘,资源库无缝切换 下载网盘内文件, 支持多个文件或目录下载, 支持断点续传和单文件并行下载。支持软链接(符号链接)文件。 上传本地文件, 支持多个文件或目录上传,支持排除指定文件夹/文件(正则表达式)功能。支持软链接(符号链接)文件。 同步备份功能支持备份本地文件到云盘,备份云盘文件到本地,双向同步备份保持本地文件和网盘文件同步。常用于嵌入式或者NAS等设备,支持docker镜像部署。 命令和文件路径输入支持Tab键自动补全,路径支持通配符匹配模式 支持JavaScript插件,你可以按照自己的需要定制上传/下载中关键步骤的行为,最大程度满足自己的个性化需求 支持共享相册的相关操作,支持批量下载相册所有普通照片、实况照片文件到本地 支持多用户联合下载功能,对下载速度有极致追求的用户可以尝试使用该选项。详情请查看文档多用户联合下载 如果大家有打算开通阿里云盘VIP会员,可以使用阿里云盘APP扫描下面的优惠推荐码进行开通。 注意:您需要开通【三方应用权益包】,这样使用本程序下载才能加速,否则下载无法提速。 Windows不第二步打开aliyunpan命令行程序,任何云盘命令都有类似如下日志输出 如何登出和下线客户端 阿里云盘单账户最多只允许同时登录 10 台设备 当出现这个提示:你账号已超出最大登录设备数量,请先下线一台设备,然后重启本应用,才可以继续使用 说明你的账号登录客户端已经超过数量,你需要先登出其他客户端才能继续使用,如下所示
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值