错排问题:考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排
当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;
综上得到
D(n) = (n-1) [D(n-2) + D(n-1)]//代表有n个元素都不在自己的位置上
HDU2049
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:
首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板...
看来做新郎也不是容易的事情...
假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。
Output
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
Sample Input
2 2 2 3 2
Sample Output
1 3
#include <bits/stdc++.h>
#include <iostream>
#define X 10005
#define inf 0x3f3f3f3f
#define PI 3.141592653589793238462643383
#define IO ios::sync_with_stdio(false),cin.tie(0), cout.tie(0);
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int maxn = (int)1e5 + 10;
typedef long long ll;
ll D[25];
int C[25][25];
int main()
{
int t;
int n,m;
D[1]=0,D[2]=1;
for(int i=3;i<=20;++i)
D[i]=(i-1)*(D[i-2]+D[i-1]);
C[0][0]=1;
for(int i=1;i<=20;++i)
for(int j=0;j<=i;++j)
C[i][j]=(j==0?1:C[i-1][j-1]+C[i-1][j]);
cin>>t;
while(t--)
{
cin>>n>>m;
cout<<ll(C[n][m]*D[m])<<endl;
}
return 0;
}
HDU 2068 RPG的错排
今年暑假杭电ACM集训队第一次组成女生队,其中有一队叫RPG,但做为集训队成员之一的野骆驼竟然不知道RPG三个人具体是谁谁。RPG给他机会让他猜猜,第一次猜:R是公主,P是草儿,G是月野兔;第二次猜:R是草儿,P是月野兔,G是公主;第三次猜:R是草儿,P是公主,G是月野兔;......可怜的野骆驼第六次终于把RPG分清楚了。由于RPG的带动,做ACM的女生越来越多,我们的野骆驼想都知道她们,可现在有N多人,他要猜的次数可就多了,为了不为难野骆驼,女生们只要求他答对一半或以上就算过关,请问有多少组答案能使他顺利过关。
Input
输入的数据里有多个case,每个case包括一个n,代表有几个女生,(n<=25), n = 0输入结束。
Sample Input
1 2 0
Sample Output
1 1
一道错排公式的反向应用
#include <bits/stdc++.h>
#include <iostream>
#define X 10005
#define inf 0x3f3f3f3f
#define PI 3.141592653589793238462643383
#define IO ios::sync_with_stdio(false),cin.tie(0), cout.tie(0);
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int maxn = (int)1e5 + 10;
typedef long long ll;
ll D[26],C[26][26];
//ll C(ll n,ll i)算组合数
//{
// ll ans=1;
// for(int j=0;j<i;++j)
// {
// //ans*=(n-j)/(j+1);这个是先算/ md被坑了
// ans=ans*(n-j)/(j+1);
// }
// return ans;
//}
int main()
{
int n;
C[0][0]=1;
for(int i=1;i<=25;++i)
for(int j=0;j<=i;++j)
C[i][j]=(j==0?1:C[i-1][j-1]+C[i-1][j]);
D[0]=1,D[1]=0,D[2]=1;
for(int i=3;i<25;++i)D[i]=(i-1)*(D[i-1]+D[i-2]);
while(cin>>n,n!=0)
{
int m=n>>1;
ll ans=1;
for(int i=1;i<=m;++i)
ans+=C[n][i]*D[i];
cout<<ans<<endl;
}
return 0;
}
//如果n=10,错排D[5],表示5个人进行错排,而且也可表示5个人进行了正确的排列;
//D[6]表示6个人进行错排,而也可表示4个人进行了正确的排序!