P2824 [HEOI2016/TJOI2016]排序

一道十分神奇的线段树题,做法十分的有趣.

  • 前置芝士

1.线段树:一个十分基础的数据结构,在这道题中起了至关重要的作用.
2.一种基于01串的神奇的二分思想:在模拟赛中出现了这道题,可以先去做一下,这样可能有助于理解.

  • 具体做法

可以发现sort是非常慢的,每次多要 O ( N log ⁡ 2 N ) O(N\log_2N) O(Nlog2N),最后的时间复杂度为 O ( M N log ⁡ 2 N ) O(MN\log_2N) O(MNlog2N),肯定是会T的,而且sort这个东西也不是很好去维护.可以发现,最后需要查询的数只有一个,于是就可以想到离线的做法. N N N虽然不小,但其实并不算大, O ( N log ⁡ 2 2 N ) O(N\log^2_2N) O(Nlog22N)是可以过的,那么有没有这样的方法呢,那自然是有的,所以就要用到01串的一种神奇的用法了.
对于每一次sort的时间复杂度为 O ( N log ⁡ 2 N ) O(N\log_2N) O(Nlog2N),那么如果这时一个01串呢,可以发现这样的时间复杂度就可以变为 O ( N ) O(N) O(N),而且这时区间覆盖,再用线段树维护就只要 O ( log ⁡ 2 N ) O(\log_2N) O(log2N).
在这里插入图片描述
(如这样一个01序列,灰色为1,白色为0,只要查询出区间的和,将最后的这几个覆盖为1,前面覆盖为0,这样为升序,降序同理)
这样就出现了一种单调性,可以发现如果将这个序列中大于等于最终答案的数改为1,小于改为0,那么最后在答案位置的数就一定是1了,反之则一定是0,所以就可以二分答案了,最终的时间复杂度为 O ( M log ⁡ 2 2 N ) O(M\log^2_2N) O(Mlog22N).(二分为 O ( log ⁡ 2 N ) O(\log_2N) O(log2N),每一次check需要 O ( M log ⁡ 2 N ) O(M\log_2N) O(Mlog2N))

  • 代码

#include<bits/stdc++.h>
#define rap(i,first,last) for(int i=first;i<=last;++i)
//线段树标准define
#define Lson (now<<1)
#define Rson (now<<1|1)
#define Middle ((left+right)>>1)
#define Left Lson,left,Middle
#define Right Rson,Middle+1,right
#define Now nowleft,nowright
using namespace std;
const int maxN=1e5+7;
int N,M,Q;
int L[maxN],R[maxN];
int arr[maxN];
bool UD[maxN];
struct Lazy//lazy标记
{
	int cover;
	bool covercheck;//用一个bool型标记这个位置需不需要cover
};
struct Tree//这是一颗资瓷区间覆盖和区间查询和的线段树
{
	int sum;
	Lazy lazy;
}tree[maxN*4];
void PushUp(int now)
{
	tree[now].sum=tree[Lson].sum+tree[Rson].sum;//合并左右子树
}
void Build(int k,int now=1,int left=1,int right=N)//建树
{
	tree[now].lazy.covercheck=0;
	if(left==right)
	{
		tree[now].sum=(arr[left]>=k);//在大于等于k时的值为1,小于为0
		return;
	}
	Build(k,Left);
	Build(k,Right);
	PushUp(now);
}
void Down(int now,int left,int right,int cover)//修改这棵树
{
	tree[now].sum=(right-left+1)*cover;
	tree[now].lazy.covercheck=1;
	tree[now].lazy.cover=cover;
}
void PushDown(int now,int left,int right)//下传标记
{
	if(tree[now].lazy.covercheck)//有标记才下传
	{
		Down(Left,tree[now].lazy.cover);
		Down(Right,tree[now].lazy.cover);
		tree[now].lazy.covercheck=0;
	}
}
void UpData(int nowleft,int nowright,int cover,int now=1,int left=1,int right=N)//区间覆盖部分
{
	if(nowright<left||right<nowleft)return;
	if(nowleft<=left&&right<=nowright)
	{
		Down(now,left,right,cover);//直接修改
		return;
	}
	PushDown(now,left,right);//下传标记
	UpData(Now,cover,Left);//修改左子树
	UpData(Now,cover,Right);//修改右子树
	PushUp(now);//合并
}
int Query(int nowleft,int nowright,int now=1,int left=1,int right=N)//查询区间和
{
	if(nowright<left||right<nowleft)return 0;
	if(nowleft<=left&&right<=nowright)//直接返回
	{
		return tree[now].sum;
	}
	PushDown(now,left,right);//下传标记
	//值为左右子树的值之和
	int result=Query(Now,Left)+Query(Now,Right);
	PushUp(now);//需要合并
	return result;
}
bool check(int middle)//check的部分
{
	Build(middle);//将大于等于middle我改为1,小于为0
	int num;
	rap(i,1,M)
	{
		num=Query(L[i],R[i]);//其中1的个数
		if(UD[i])
		{
			//降序修改
			UpData(L[i],L[i]+num-1,1);//前num个为1
			UpData(L[i]+num,R[i],0);//后面的为0
		}
		else
		{
			//升序同理
			num=R[i]-L[i]+1-num;
			UpData(L[i],L[i]+num-1,0);
			UpData(L[i]+num,R[i],1);
		}
	}
	return Query(Q,Q);//返回最终位置的值
}
int getanswer()//二分答案
{
	int left=1,right=N;//因为这是一个排列,所以这个数是在1~N的范围内
	int answer=-1;
	while(left<=right)
	{
		if(check(Middle))
		{
			//如果可以就记录答案,并且修改left
			answer=Middle;
			left=Middle+1;
		}
		else
		{
			//不可以就修改right
			right=Middle-1;
		}
	}
	return answer;//返回最终答案
}
int main()
{
	//离线做法
	scanf("%d%d",&N,&M);
	rap(i,1,N)scanf("%d",&arr[i]);
	rap(i,1,M)scanf("%d%d%d",&UD[i],&L[i],&R[i]);
	scanf("%d",&Q);
	printf("%d",getanswer());//输出答案
	return 0;
}

一种神奇的思路.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值