高等数学学习笔记DAY23

闭区间上连续函数的性质

有界性与最大值最小值定理

先说明最大值和最小值的概念.对于区间 I I I 上有定义的函数 f ( x ) f(x) f(x),如果有 x 0 ∈ I x_0\in I x0I,使得 ∀ x ∈ I \forall x\in I xI, ∃   f ( x ) ≤ f ( x 0 ) ( f ( x ) ≥ f ( x 0 ) ) \exists\ f(x)\leq f(x_0)(f(x)\geq f(x_0))  f(x)f(x0)(f(x)f(x0)),那么就称 f ( x 0 ) f(x_0) f(x0) 是函数 f ( x ) f(x) f(x) 在区间 I I I 上的最大值(最小值).

定理1(有界性与最大值最小值定理)

在闭区间上连续的函数在该区间上有界,且一定能取到它的最大值和最小值.

这就是说,如果函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,那么存在常数 M > 0 M>0 M>0,使得对于任一 x ∈ [ a , b ] x\in[a,b] x[a,b],满足 ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M;且至少有一个点 ξ 1 \xi_1 ξ1,使 f ( ξ 1 ) f(\xi_1) f(ξ1) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最大值;又至少有一点 ξ 2 \xi_2 ξ2,使得 f ( ξ 2 ) f(\xi_2) f(ξ2) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最小值.

注意:函数在开区间内连续,或函数在闭区间上有间断点,那么函数在改区间上不一定有界,也不一定有最大值和最小值.

零点定理和中介定理

如果 x 0 x_0 x0 使 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0,那么就称为函数 f ( x ) f(x) f(x)零点.

定理2(零点定理)

设函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,且 f ( a ) f(a) f(a) f ( b ) f(b) f(b) 异号(即 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0),则在开全景 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ,使得 f ( ξ ) = 0. f(\xi)=0. f(ξ)=0.

从几何上看,定理2表示:如果连续曲线弧 y = f ( x ) y=f(x) y=f(x) 的两个端点位于 x x x 轴的不同侧,那么这段曲线弧与 x x x 轴至少有一个交点.

由定理2可以推出下列较一般性定理.

定理3(介值定理)

**设函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上连续,且在这区间的端点取不同的函数值 f ( a ) = A   f ( b ) = B , f(a)=A\ f(b)=B, f(a)=A f(b)=B,则对于 A A A B B B 之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b) 内至少存在一点 ξ \xi ξ,使得 f ( ξ ) = C ( a < ξ < b ) . f(\xi)=C(a<\xi<b). f(ξ)=C(a<ξ<b).

证明较简单,略.

推论

在闭区间 [ a , b ] [a,b] [a,b] 上连续的函数 f ( x ) f(x) f(x) 的值域为 [ m , M ] [m,M] [m,M],其中 m m m M M M,依次为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最小值和最大值.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值