高等数学学习笔记DAY21

连续函数的运算与初等函数的连续性

连续函数的四则运算的连续性

由函数在某点连续和极限的四则运算,可以得到以下定理:

定理1

设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在点 x 0 x_0 x0 处连续,则它们的和(差) f ± g f\pm g f±g,积 f ⋅ g f\cdot g fg,商 f g ( g ≠ 0 ) \frac{f}{g}(g\not=0) gf(g=0)都在点 x 0 x_0 x0 处连续.

反函数与复合函数的连续性

定理2

如果函数 y = f ( x ) y=f(x) y=f(x) 在区间 I x I_x Ix 上单调增加(单调减少)且连续,那么它的反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) 也在对于的区间 I y = { y ∣ y = f ( x ) , x ∈ I x } I_y=\{y|y=f(x),x\in I_x\} Iy={yy=f(x),xIx} 上单u调递增(单调递减)且连续.

定理3

设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 由函数 u = g ( x ) u=g(x) u=g(x) 和函数 y = f ( x ) y=f(x) y=f(x) 复合而成, U ˚ ( x 0 ) ∈ D f ∘ g \mathring{U}(x_0)\in D_{f\circ g} U˚(x0)Dfg.若 lim ⁡ x → x 0 g ( x ) = u 0 \lim_{x\to x_0}g(x)=u_0 limxx0g(x)=u0,而函数 y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_0 u=u0 连续则 lim ⁡ x → x 0 f [ g ( u ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) . \lim_{x\to x_0}f[g(u)]=\lim_{u\to u_0}f(u)=f(u_0). xx0limf[g(u)]=uu0limf(u)=f(u0).

证:在复合函数极限运算法则中,令 A = f ( u 0 ) A=f(u_0) A=f(u0)(这时 f ( u ) f(u) f(u) 在点 u 0 u_0 u0 连续),并取消"存在 δ 0 > 0 \delta_0>0 δ0>0,当 x ∈ U ˚ ( x 0 , δ 0 ) x\in\mathring{U}(x_0,\delta_0) xU˚(x0,δ0) 时,有 g ( x ) ≠ u 0 g(x)\not=u_0 g(x)=u0"这一条件,遍得上面定理,这里 g ( x ) ≠ u 0 g(x)\not=u_0 g(x)=u0 这条件可以取消的理由是: ∀ ε > 0 \forall\varepsilon>0 ε>0,使 g ( x ) = u 0 g(x)=u_0 g(x)=u0 成立的那些点 x x x,显然也使 ∣ f [ g ( x ) ] − f ( u 0 ) ∣ < ε |f[g(x)]-f(u_0)|<\varepsilon f[g(x)]f(u0)<ε 成立.因此附加 g ( x ) ≠ u 0 g(x)\not=u_0 g(x)=u0 这条件也没有必要了.

因为定理3中有 lim ⁡ x → x 0 f ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = f ( u 0 ) , \lim_{x\to x_0}f(x)=u_0,\lim_{u\to u_0}f(u)=f(u_0), xx0limf(x)=u0,uu0limf(u)=f(u0),所以 lim ⁡ x → x 0 f [ g ( u ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) \lim_{x\to x_0}f[g(u)]=\lim_{u\to u_0}f(u)=f(u_0) xx0limf[g(u)]=uu0limf(u)=f(u0)可以表示成 lim ⁡ x → x 0 f [ g ( x ) ] = f [ lim ⁡ x → x 0 g ( x ) ] . \lim_{x\to x_0}f[g(x)]=f[\lim_{x\to x_0}g(x)]. xx0limf[g(x)]=f[xx0limg(x)].上式表示,在定理3的条件下,如果作代换 u = f ( x ) u=f(x) u=f(x),那么求 lim ⁡ x → x 0 f [ g ( x ) ] \lim_{x\to x_0}f[g(x)] limxx0f[g(x)] 就化为求 lim ⁡ u → u 0 f ( u ) \lim_{u\to u_0}f(u) limuu0f(u),这里 u 0 = lim ⁡ x → x 0 g ( x ) u_0=\lim_{x\to x_0}g(x) u0=limxx0g(x).在定理3的条件下,求复合函数 f [ g ( x ) ] f[g(x)] f[g(x)] 的极限时,函数符号 f f f 与极限符号 lim ⁡ x → x 0 \lim_{x\to x_0} limxx0 可以交换次序.

把定理3中的 x → x 0 x\to x_0 xx0 换成 x → ∞ x\to\infty x,可以得到类似的定理.

定理4

**设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) 和函数 y = f ( u ) y=f(u) y=f(u) 复合而成, U ( x 0 ) ⊂ D f ∘ g U(x_0)\subset D_{f\circ g} U(x0)Dfg.若函数 u = g ( x ) u=g(x) u=g(x) x = x 0 x=x_0 x=x0 连续,且 g ( x 0 ) = u 0 g(x_0)=u_0 g(x0)=u0,而函数 y = f ( x ) y=f(x) y=f(x) u = u 0 u=u_0 u=u0 连续,则符合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] x = x 0 x=x_0 x=x0 也连续.

证:只要在定理3中令 u 0 = g ( x 0 ) u_0=g(x_0) u0=g(x0),这就表示 g ( x ) g(x) g(x) 在点 x 0 x_0 x0 连续,于是 lim ⁡ x → x 0 f [ g ( u ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) \lim_{x\to x_0}f[g(u)]=\lim_{u\to u_0}f(u)=f(u_0) xx0limf[g(u)]=uu0limf(u)=f(u0) lim ⁡ x → x 0 f [ g ( x ) ] = f ( u 0 ) = f [ g ( x 0 ) ] , \lim_{x\to x_0}f[g(x)]=f(u_0)=f[g(x_0)], xx0limf[g(x)]=f(u0)=f[g(x0)],这就证明了符合函数 f [ g ( x ) ] f[g(x)] f[g(x)] 在点 x 0 x_0 x0 的连续性.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值