刚看见的时候貌似是一道很难做的题…题面十分的玄学,不能重选的要求也十分难搞…
但是,可以发现N<=5*105从中可以不难发现一旦不能直接取时便会一定有一对正好和为1e6-1
#include<bits/stdc++.h>
using namespace std;
const int maxS=1000005;
int a[maxS],b[maxS],answer[maxS],S,N;
bool boo[maxS];
int main()
{
S=1000000;
scanf("%d",&N);
int i;
for(i=1;i<=N;i++)
{
scanf("%d",&a[i]);
boo[a[i]]=1;//不能选了
}
int cnt=0;
int full=0;//成对不能选的个数
for(i=1;i<=N;i++)
if(!boo[S-a[i]+1])//直接取
{
answer[++cnt]=S-a[i]+1;
boo[S-a[i]+1]=1;
}
else
full++;
full/=2;//计算了两次..
for(i=1;i<=(S+1)/2;i++)
if(!boo[i]&&!boo[S-i+1])//成对可以取的
{
if(!full)break;//不需要了
full--;
answer[++cnt]=i;
answer[++cnt]=S-i+1;
}
printf("%d\n",cnt);//输出个数
for(i=1;i<=cnt;i++)
printf("%d ",answer[i]);//输出序列
return 0;
}
算是一道小清新的构造题…吧…