希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
基本思想
先取一个小于n的整数d1作为第一个
增量,把文件的全部记录分组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行
直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量
=1(
<
…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法
比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的
排序算法中实现了这一思想。算法先将要排序的一组数按某个
增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当
增量减到1时,整个要排序的数被分成一组,排序完成。
一般的初次取序列的一半为
增量,以后每次减半,直到增量为1。
给定实例的shell排序的排序过程
假设待排序文件有10个记录,其关键字分别是:
49,38,65,97,76,13,27,49,55,04。
增量序列的取值依次为:
5,2,1
稳定性
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
缩小增量
希尔排序属于插入类排序,是将整个有序序列分割成若干小的子序列分别进行
插入排序。
三趟结果
04 13 27 38 49 49 55 65 76 97
优劣
不需要大量的辅助空间,和
归并排序
一样容易实现。希尔排序是基于
插入排序
的一种算法, 在此算法基础之上增加了一个新的特性,提高了效率。希尔排序的
时间复杂度
与增量序列的选取有关,例如
希尔增量
时间复杂度为O(n²),而Hibbard增量的希尔排序的时间复杂度为O(
),希尔排序时间复杂度的下界是n*log2n。希尔排序没有
快速排序算法
快 O(n(logn)),因此中等大小规模表现良好,对规模非常大的
数据排序
不是最优选择。但是比O(
)复杂度的算法快得多。并且希尔排序非常容易实现,算法代码短而简单。 此外,希尔算法在最坏的情况下和平均情况下执行效率相差不是很多,与此同时快速排序在最坏的情况下执行的效率会非常差。专家们提倡,几乎任何排序工作在开始时都可以用希尔排序,若在实际使用中证明它不够快,再改成快速排序这样更高级的
排序算法
. 本质上讲,
希尔排序算法
是直接插入排序算法的一种改进,减少了其复制的次数,速度要快很多。 原因是,当n值很大时
数据项
每一趟排序需要的个数很少,但数据项的距离很长。当n值减小时每一趟需要和动的数据增多,此时已经接近于它们排序后的最终位置。 正是这两种情况的结合才使希尔排序效率比
插入排序
高很多。Shell算法的性能与所选取的分组长度序列有很大关系。只对特定的待排序记录序列,可以准确地估算关键词的比较次数和对象移动次数。想要弄清关键词比较次数和记录移动次数与增量选择之间的关系,并给出完整的数学分析,至今仍然是数学难题。
时间性能
1.
增量序列的选择
好的
增量序列的共同特征:
① 最后一个
增量必须为1;
② 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况。
有人通过大量的实验,给出了较好的结果:当n较大时,比较和移动的次数约在nl.25到1.6n1.25之间。
2.Shell排序的时间性能优于
直接插入排序
希尔排序的时间性能优于
直接插入排序的原因:
①当文件初态基本有序时
直接插入排序所需的比较和移动次数均较少。
③在希尔排序开始时
增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。
因此,希尔排序在效率上较直接插入排序有较大的改进。
希尔排序是按照不同步长对元素进行
插入排序
,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的
时间复杂度
会比o(n^2)好一些。
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
void println(int array[], int len)
{
int i = 0;
for(i=0; i<len; i++)
{
printf("%d ", array[i]);
}
printf("\n");
}
void swap(int array[], int i, int j)
{
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
void InertionSort(int array[], int len) // O(n*n)
{
int i = 0;
int j = 0;
int k = -1;
int temp = -1;
//{12, 5, 433, 253, 216, 7};
for(i=1; i<len; i++)
{
k = i; //待插入位置
temp = array[k];
for(j=i-1; (j>=0) && (array[j]>temp); j--)
{
array[j+1] = array[j]; //元素后移
k = j; //k需要插入的位置
}
array[k] = temp;//元素插入
}
}
//nlogn
void ShellSort(int array[], int len) //
{
int i = 0;
int j = 0;
int k = -1;
int temp = -1;
int gap = len;
do
{
//业界统一实验的 平均最好情况 经过若干次后,收敛为1
gap = gap / 3 + 1; //gap /2345 2000 都行 //O(n 1.3)
for(i=gap; i<len; i+=gap)
{
k = i;
temp = array[k];
for(j=i-gap; (j>=0) && (array[j]>temp); j-=gap)
{
array[j+gap] = array[j];
k = j;
}
array[k] = temp;
}
}while( gap > 1 );
}
int main()
{
int array[] = {12, 5, 433, 253, 216, 7};
int len = sizeof(array) / sizeof(*array);
println(array, len);
ShellSort(array, len);
println(array, len);
system("pause");
return 0;
}