cf621E. Wet Shark and Blocks

首先如果b在1e6左右 那么普通的dp就可以搞定

但是b的范围给到了1e9  我们就要考虑用矩阵来优化这个dp了

now[i][j]表示初始状态是i,最终状态是j的方案数

那么对于这个矩阵b次幂之后res[0][k]就是所要求的答案了

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
using namespace std;
int n,b,kk,x,dp[100][100];
const int N=100;  
const int mo=1e9+7;
long long tmp[N][N],now[N][N],num[N],ans;  
void multi(long long a[][N],long long b[][N],int n)  
{  
    memset(tmp,0,sizeof tmp);  
    for(int i=0;i<n;i++)  
     for(int j=0;j<n;j++)  
      for(int k=0;k<n;k++)  
        tmp[i][j]=(tmp[i][j]+a[i][k]*b[k][j]%mo)%mo;  
    for(int i=0;i<n;i++)  
     for(int j=0;j<n;j++)  
        a[i][j]=tmp[i][j];  
}  
long long res[N][N];  
void Pow(long long a[][N],long long n)  
{  
    memset(res,0,sizeof res);  
    for(int i=0;i<x;i++) res[i][i]=1;  
    while(n)  
    {  
        if(n&1)  
            multi(res,a,x);  
        multi(a,a,x); 
        n>>=1;  
    }  
}
int main()
{
    scanf("%d%d%d%d",&n,&b,&kk,&x); int xx;
    for (int i=0;i<x;i++)
     for (int j=0;j<x;j++) dp[i][j]=(i*10+j)%x;
    for (int i=1;i<=n;i++) scanf("%d",&xx),num[xx%x]++;
    for (int i=0;i<x;i++)
     for (int j=0;j<x;j++)
       now[i][dp[i][j]]=(now[i][dp[i][j]]+num[j]%mo)%mo;
    Pow(now,b);
    printf("%lld\n",res[0][kk]);
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值