首先如果b在1e6左右 那么普通的dp就可以搞定
但是b的范围给到了1e9 我们就要考虑用矩阵来优化这个dp了
now[i][j]表示初始状态是i,最终状态是j的方案数
那么对于这个矩阵b次幂之后res[0][k]就是所要求的答案了
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
using namespace std;
int n,b,kk,x,dp[100][100];
const int N=100;
const int mo=1e9+7;
long long tmp[N][N],now[N][N],num[N],ans;
void multi(long long a[][N],long long b[][N],int n)
{
memset(tmp,0,sizeof tmp);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
tmp[i][j]=(tmp[i][j]+a[i][k]*b[k][j]%mo)%mo;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
a[i][j]=tmp[i][j];
}
long long res[N][N];
void Pow(long long a[][N],long long n)
{
memset(res,0,sizeof res);
for(int i=0;i<x;i++) res[i][i]=1;
while(n)
{
if(n&1)
multi(res,a,x);
multi(a,a,x);
n>>=1;
}
}
int main()
{
scanf("%d%d%d%d",&n,&b,&kk,&x); int xx;
for (int i=0;i<x;i++)
for (int j=0;j<x;j++) dp[i][j]=(i*10+j)%x;
for (int i=1;i<=n;i++) scanf("%d",&xx),num[xx%x]++;
for (int i=0;i<x;i++)
for (int j=0;j<x;j++)
now[i][dp[i][j]]=(now[i][dp[i][j]]+num[j]%mo)%mo;
Pow(now,b);
printf("%lld\n",res[0][kk]);
return 0;
}