Pandas 统计分析之时间重采样resample

pandas中时间重采样的方法resample(),重采样指时间重采样,索引必须是时间类型,或者通过on指定要重采样的时间类型的column列。
参数:
rule 表示目标转换的偏移量字符串或对象
freq 表示重采样频率,例如‘M’、‘5min’,Second(15)
how=‘mean’ 用于产生聚合值的函数名或数组函数,例如‘mean’、‘ohlc’、np.max等,默认是‘mean’,其他常用的值由:‘first’、‘last’、‘median’、‘max’、‘min’
axis=0 哪个轴用于向上采样或向下采样。对于序列,这将默认为0,即沿着行。必须是DatetimeIndex, TimedeltaIndex或PeriodIndex。默认是纵轴,横轴设置axis=1
fill_method = None 升采样时如何插值,比如‘ffill’、‘bfill’等
closed = ‘right’ 在降采样时,各时间段的哪一段是闭合的,‘right’或‘left’,默认‘right’
label= ‘right’ 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35
convention = None 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end’
kind = None 聚合到时期(‘period’)或时间戳(‘timestamp’),默认聚合到时间序列的索引类型
loffset = None 调整重新取样的时间标签
base 对于平均细分1天的频率,为累计间隔的“起源”。例如,对于“5min”频率,基数可以从0到4。默认值为0。
on 对于数据流,要使用列而不是索引进行重采样。列必须与日期时间类似。
level 对于多索引,用于重采样的级别(名称或数字)。级别必须与日期时间相似
origin 要调整分组的时间戳。起始时区必须与索引的时区匹配。如果没有使用时间戳,也支持以下值:epoch:原点是1970-01-01’;start ': origin是timeseries的第一个值;“start_day”:起源是timeseries午夜的第一天;
offset 加到原点的偏移时间增量

freq参数:
B:工作日频率
C:自定义工作日频率
D:日历日频率
W:每周频率
ME:月末频率
SME:半月末频率(15日和月末)
BME:营业月末频率
CBME:自定义业务月末频率
MS:月份开始频率
SMS:半个月开始频率(1日和15日)
BMS:营业月开始频率
CBMS:自定义营业月开始频率
QE:季度末频率
BQE:业务季度末频率
QS:季度开始频率
BQS:业务季度开始频率
YE:年末频率
BYE:营业年度结束频率
YS:年开始频率
BYS:营业年度开始频率
h:每小时频率
bh:营业时间频率
cbh:自定义营业时间频率
min:分钟频率
s:秒频率
ms:毫秒
us:微秒
ns:纳秒

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值