R语言-时间序列-arima模型-forecast、tseries包

本文介绍了如何使用R语言进行时间序列分析,包括生成随机观测值、绘制时间序列图、进行单根检验以及利用ACF和PACF函数分析自相关和偏自相关系数。通过arima.sim函数创建符合ARIMA模型的数据,为时间序列预测打下基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近初步接触了下如何用R语言进行时间序列分析,自己动手写了段小代码。

首先呢是生成随机观测值,接着画出时间序列图,然后进行单根检验和用 ACF 和 PACF 指令分别画出自相关数和偏自相关系数图。

随机观测值生成我用了两种,一种是迭代随机生成,一种是用arima.sim函数生成一列符合arima(p,q)模型的数据。

install.packages("tseries") #安装"tseries"包,仅需在首次运行时安装
install.packages("forecast") #安装"forecast"包,仅需在首次运行时安装

library('forecast') #调出"tseries"包
library('tseries') #调出"forecast"包


funy <- function(t)
{
  return(ifelse(t>0, 0.75+0.85*funy(t-1), t))
}  #构造一个递归函数

set.seed(1)  #设定编号为1的随机数种子,目的是下次重复时生成同样的随机数help
u<-rnorm(500, mean=0, sd=1) #随机生成500个服从正态分布的独立同分布的白噪声(均值为0,标准差为1)y<-vector()

y<-vector()
for(t in 1:500)
{
    y[t]=funy(t)+u[t]
}  #循环调用递归函数和白噪声生成函数,以生成500个观测值


mean(y) #计算均值E(yt)
var(y) #计算方差Var(yt)


plot.ts(y, col="blue", main="y变量的时间序列图", xla
内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值