论文导读 | 基于图机器学习的子图匹配算法研究 纵观使用图神经网络优化子图匹配方法的相关工作,本文作者发现其存在两点不足:其一,与传统方法的比较中,考虑的因素不够全面,比较不够公平。现有方法比较的传统方法绝大部分是运行在CPU端的方法,甚至是单线程实现的方法,而基于机器学习的方法需要使用GPU进行训练,同时在推理过程中有不同程度的并行计算优化,而这部分并发化带来的提升在实验中没有得到很好的体现。基于机器学习的方法投入了十倍的算力成本,但并不能保证带来十倍以上的性能收益。
论文导读 | 关于最新子图匹配的综述和实验研究 子图匹配(Subgraph Matching)是图模式挖掘算法中的一个热点研究问题,其旨在一个数据图中挖掘出所有与给定查询图同构(或同态)的子图。目前大多数的子图匹配工作都是在顶点带标签的无向图上对子图同构进行研究。由于子图匹配问题是一个NP-hard的问题,因此当数据图的规模很大或查询图的顶点数目很多时,子图匹配算法的效率会大打折扣。为了提高子图匹配算法的效率,现存的子图匹配算法从过滤候选、生成有效的匹配顺序和加速枚举过程等多个角度对子图匹配进行优化设计,提出了许多行之有效的优化方法。
论文导读 | 大模型幻觉的检测与消除 本次论文分享围绕大模型幻觉的检测与消除中的分类器、不确定性度量、模型的评价能力共三个方面进行了调研与整理。对于未来的研究方向,笔者认为,在训练中可以通过知识图谱等可信知识源批量生成高质量数据,以及设计相关算法排除低质、有害的数据,防止幻觉通过训练引入大模型。在推理过程中则应当研究更为鲁棒的推理机制,在检索生成、思维链、辅助代码等基础上提出更为复杂的融合策略,提升大模型的可信度。
数据科学——一个系统的探讨 文末附M. Tamer Özsu教授《Introduction to Data Science》讲座视频本文的目的是提出一个内在一致和连贯的数据科学观点。在科学和社会领域,一场以数据驱动的革命正在进行,颠覆着各种形式的企业,因为我们收集和存储数据的速度比以往任何时候都要快。数据作为一个组织的核心资产的价值观已经被确立,并被普遍接受。《经济学人》()称数据是“世界上最有价值的资源”。世界经济论坛简报《数据业务新范式》()指出:“数字经济和社会的核心是洞察力、情报和信息数据的爆炸式增长。
北京大学gStore团队入选《中国数据库产业图谱(2024年)》 7月16日,2024可信数据库发展大会主论坛在北京成功召开,并在会上正式发布《中国数据库产业图谱(2024年)》。在此次发布的产业图谱中,《中国数据库产业图谱(2024年)》是由中国通信标准化协会大数据技术标准推进委员会(CCSA TC601)发布的数据库产业全景图,旨在全面客观展现我国数据库产业中的关键领域、环节和代表企业。
论文导读 | 合取正则路径查询 合取正则路径查询(Conjunctive Regular Path Query, CRPQ)是各种主流图数据库查询语言(如SPARQL、Cypher、GQL)中的核心组成部分之一。要介绍合取正则路径查询,需要从正则路径查询(Regular Path Query, RPQ)开始讲起。∣r∗∣。
图谱动态240709 不幸的是,现有解决方案未能满足这些要求。作者的广泛实证评估表明,在类似TPC-DS的查询上,GEqO带来了显著的性能提升——比自动验证器快多达200倍,并且发现的等价性比优化器和基于签名的等价性方法多出2倍。本周推荐的SIGMOD 2024上的论文:GEqO: ML-Accelerated Semantic Equivalence Detection,该文提出了一个名为GEqO的基于机器学习的框架,能够在大规模分析引擎中高效检测语义等价计算,从而提高集群资源利用率和减少作业执行时间。
喜报 | 邹磊老师指导博士生苟向阳入选首届 “中国计算机学会数据库专委会优秀博士学位论文激励计划” 中国计算机学会数据库专委会优秀博士学位论文激励计划” 由中国计算机学会数据库专委会按照《中国计算机学会数据库专委会优秀博士学位论文激励计划遴选办法》的文件要求启动和评选,目的在于积极贯彻落实国家科技强国、人才强国战略,发挥中国计算机学会数据库专委会在发现人才、培养人才、举荐人才方面的作用,推动计算机数据库领域的技术进步与创新。该论文从图流的近似存储算法入手,首先研究了支持简单的数据项查询的数据流摘要算法,之后又进一步研究了支持复杂的图结构查询的图流摘要算法。本篇论文围绕图流近似处理展开研究。
欢迎报名 | CCKS-IJCKG 2024 技术评测任务六“基于图数据库的自定义图分析算法评测” 知识图谱本质是基于图的语义网络,而图数据库又是以图模式存储管理数据,因此图数据库用于存储知识图谱数据具有得天独厚的优势。通过在知识图谱上进行查询、分析、推理是实现知识图谱应用的关键核心技术,而反映到图数据库上则是基于图数据库上的图查询与图分析。BFS和DFS是图数据库最核心的算法之一,基于此之上,众多学者针对不同需求设计了衍一系列的图查询与图分析算法,如Jaccard相似度算法、Louvain算法、直径估计算法等,且设计了不同变种算法。
论文导读 | knowledge-based VQA 传统的视觉问答(Visual Question Answering, VQA)基准测试主要集中在简单计数、视觉属性和物体检测等问题上,这些问题不需要超出图像内容的推理或知识。然而,在knowledge-based VQA中,仅靠图像无法回答给定的问题,还需要有效利用外部知识资源。经典的知识基础VQA数据集包括OK-VQA和A-OKVQA。OK-VQA包含约14K个样本,分为9K/5K用于训练和测试,涵盖以下类别:车辆和交通;品牌、公司和产品;物品、材料和服装;体育和娱乐;烹饪和食品;
PKUMOD同学又双叒获奖啦~ 李彦增,北京大学智能学院2021级博士研究生,师从王选计算机研究所邹磊教授,主要研究方向包括知识图谱构建管理及应用等,在ACL、NAACL、CIKM、ISWC等国际会议发表论文20余篇,曾获IEEE DSC Best Paper Runner Up Award等奖励,常年担任ACL、EMNLP、NAACL、AAAI、MM、TKDE等会议期刊的程序委员会成员或期刊审稿人,作为主要参与人员或参与人员参与及完成国重研、国自然及企业合作等10余项重要科研任务。期待他们在未来的科研道路上。凭借在各自领域的卓越表现。
论文导读 | 独立路径多查询问题 独立路径:两条简单路径,如果除了端点外没有相同的顶点,则称这两条路径相互独立。k条路径两两相互独立则称这k条路径是k条独立路径。如图所示,红色和蓝色的两条路径是a和h之间的两条独立路径。k独立路径单查询:该问题有广泛的应用:网络安全。在网络流量中,机密信息通过路径从源发送到目的地。我们可以将信息分成几个部分,用不相交的路径发送,以降低隐私泄露的风险。网络容错。不相交的路径可以增强网络在路由方面的健壮性。
论文导读 | 投机解码加速模型推理 投机解码(speculative decoding)最早在[1,2]中被提出。其方法可以概括为由一个小模型一次猜一批可能的结果,再由大模型并行地验证这些结果是否要接受。投机解码利用了上面两个观察,先用小模型猜后续的若干个tokens,如果当前的问题比较简单,则小模型有更大的可能猜对多个token。然后再用大模型并行的验证这一些token是否符合大模型的输出。由于现代计算机的并行能力,我们可以近似的认为大模型处理一个token和处理w个token的用时是几乎一样的。
论文导读 | 增强大模型的数学能力 数学能力是人类智能的一项基础技能,在自然科学、计算机科学、医学、金融等不同领域都发挥重要作用。因此也是现在评价大模型能力的重要指标。现在评价大模型数学能力最常用的两个评测数据集分别是MATH和GSM8KMATH数据集是一个由加州大学伯克利分校的研究团队开发的新数据集,专门用于衡量机器学习模型解决数学问题的能力。该数据集包含12,500个来自高中数学竞赛的挑战性问题,每个问题都有一个完整的逐步解决方案,这使得模型可以学习如何生成答案推导和解释。MATH数据集的问题覆盖了七个主要的数学领域,包括代数、几何、数论
论文导读 | 图对齐 图对齐问题是将两个图的节点进行匹配的问题。而半监督图对齐指的是已知小部分节点之间的对应关系,通过学习获得其他节点的匹配关系。问题定义如下:给定属性图G1A1X1G2A2X2和锚节点对,输出相似矩阵SSxa表示G1中结点a和G2中结点x的相似性。解决这个问题常见方法有以下3种:consistency-based、embedding-based和optimal transport。
图解李白的“朋友圈” 本次我们从互联网上搜集了有关《长安三万里》中的人物以及其他唐代著名诗人的基本信息,然后以诗人、诗歌为主要实体类型,梳理了诗人之间的关系,在gBuilder中用非结构化数据表单录入的方式,最终得到了唐朝诗人关系的RDF文件。节点可以表示实体和属性,边可以表示为实体-实体和实体-属性之间的关系,这种形式对处理复杂的关联关系有着天然的优势,也更接近人类认知世界的形式,为数据处理提供了一种更好的组织和管理能力。在实际项目中,也可以根据不同类型的数据选择不同的抽取方式,或多种方式结合的形式来构建知识图谱。
#gStore-weekly | gMaster功能详解之数据划分策略 文件格式为<predicate>\t{Node_id},predicate为三元组谓语,Node_id为节点id(数字类型),把计划分配到同一节点的节点id配置为相同。文件格式为<entity>\t{Node_id},entity为三元组主语或宾语,Node_id为节点id(数字类型),把计划分配到同一节点的节点id配置为相同。如果主语、宾语模值不相等,该三元组分配到两个节点。划分节点时,1种是根据对主语、宾语、谓语计算hash值与节点数取模确认节点,1种是指定节点ID,通过ID与节点数取模确认节点。