http://poj.org/problem?id=1113
使用Graham-Scan算法。
为什么扫描阶段的复杂度是O(n)的?
因为在扫描的过程中,每个点至多进栈一次,至多出栈一次,也就是说对每个点我们至多进行两次叉积运算,所以复杂度是O(n)的。
完整代码:
/*16ms,592KB*/
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int mx = 1005;
struct point
{
double x, y;
point(double x = 0.0, double y = 0.0): x(x), y(y) {}
void read() const
{
scanf("%lf%lf", &x, &y);
}
bool operator == (const point& a) const
{
return fabs(x - a.x) < eps && fabs(y - a.y) < eps;
}
bool operator < (const point& a) const
{
return x < a.x || fabs(x - a.x) < eps && y < a.y;
}
};
point a[mx], ans[mx];
int n, len;
inline double dis(point& p1, point& p2)
{
return hypot(p1.x - p2.x, p1.y - p2.y);
}
///ab x ac
inline double cross_product(point& a, point& b, point& c)
{
return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
}
///求凸包
void convex_hull()
{
sort(a, a + n);
//unique(a, a + n);
len = 0;
int i;
///构建一个下凸包,从0到n-1
for (i = 0; i < n; ++i)
{
while (len >= 2 && cross_product(ans[len - 2], ans[len - 1], a[i]) < eps)
--len;
ans[len++] = a[i];
}
///构建一个上凸包,从n-2到0
///注意在构建上凸包的过程中我们用到了n-1这个点
///为什么0要算两次?因为我们要借助它来删去那些在凸包内的点
int tmp = len;
for (i = n - 2; i >= 0; --i)
{
while (len > tmp && cross_product(ans[len - 2], ans[len - 1], a[i]) < eps)
--len;
ans[len++] = a[i];
}
--len;///0算了两次
}
///求凸包周长
double perimeter()
{
double sum = 0.0;
ans[len] = ans[0];
for (int i = 0; i < len; ++i) sum += dis(ans[i], ans[i + 1]);
return sum;
}
int main()
{
int l;
scanf("%d%d", &n, &l);
for (int i = 0; i < n; ++i) a[i].read();
convex_hull();
printf("%.0f", perimeter() + 2 * l * PI);
return 0;
}