POJ 1113 Wall (凸包周长)

http://poj.org/problem?id=1113


使用Graham-Scan算法。

为什么扫描阶段的复杂度是O(n)的?

因为在扫描的过程中,每个点至多进栈一次,至多出栈一次,也就是说对每个点我们至多进行两次叉积运算,所以复杂度是O(n)的。


完整代码:

/*16ms,592KB*/

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int mx = 1005;

struct point
{
	double x, y;
	point(double x = 0.0, double y = 0.0): x(x), y(y) {}
	void read() const
	{
		scanf("%lf%lf", &x, &y);
	}
	bool operator == (const point& a) const
	{
		return fabs(x - a.x) < eps && fabs(y - a.y) < eps;
	}
	bool operator < (const point& a) const
	{
		return x < a.x || fabs(x - a.x) < eps && y < a.y;
	}
};

point a[mx], ans[mx];
int n, len;

inline double dis(point& p1, point& p2)
{
	return hypot(p1.x - p2.x, p1.y - p2.y);
}

///ab x ac
inline double cross_product(point& a, point& b, point& c)
{
	return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
}

///求凸包
void convex_hull()
{
	sort(a, a + n);
	//unique(a, a + n);
	len = 0;
	int i;

	///构建一个下凸包,从0到n-1
	for (i = 0; i < n; ++i)
	{
		while (len >= 2 && cross_product(ans[len - 2], ans[len - 1], a[i]) < eps)
			--len;
		ans[len++] = a[i];
	}

	///构建一个上凸包,从n-2到0
	///注意在构建上凸包的过程中我们用到了n-1这个点
	///为什么0要算两次?因为我们要借助它来删去那些在凸包内的点
	int tmp = len;
	for (i = n - 2; i >= 0; --i)
	{
		while (len > tmp && cross_product(ans[len - 2], ans[len - 1], a[i]) < eps)
			--len;
		ans[len++] = a[i];
	}
	--len;///0算了两次
}

///求凸包周长
double perimeter()
{
	double sum = 0.0;
	ans[len] = ans[0];
	for (int i = 0; i < len; ++i) sum += dis(ans[i], ans[i + 1]);
	return sum;
}

int main()
{
	int l;
	scanf("%d%d", &n, &l);
	for (int i = 0; i < n; ++i) a[i].read();
	convex_hull();
	printf("%.0f", perimeter() + 2 * l * PI);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值