机器学习中分类和预测算法的评估:
准确率
速度
强壮性
可规模性
可解释性
1. 什么是决策树/判定树(decision tree)?
判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布,树的最顶层是根结点。
2. 机器学习中分类方法中的一个重要算法
3. 构造决策树的基本算法
3.1 熵(entropy)概念:
信息和抽象,如何度量?
1948年,香农提出了 ”信息熵(entropy)“的概念
一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我们一无所知的事情,需要了解大量信息,信息量的度量就等于不确定性的多少。
例子:猜世界杯冠军,假如一无所知,猜多少次?每个队夺冠的几率不是相等的。通过比特(bit)来衡量信息的多少。
变量的不确定性越大,熵也就越大。
举例如何确定分裂节点:
3.2 决策树归纳算法 (ID3)
1970-1980, J.Ross. Quinlan, 提出了ID3算法
选择属性判断结点,信息获取量(Information Gain):
Gain(A) = Info(D) - Infor_A(D)
3.3 其他算法:
C4.5: Quinlan
Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
共同点:都是贪心算法,自上而下(Top-down approach)
区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
3.4 决策树的优缺点
决策树的优点:直观,便于理解,小规模数据集有效
决策树的缺点:处理连续变量不好类别较多时,错误增加的比较快可规模性一般。