在美丽的玄武湖畔,鸡鸣寺边,鸡笼山前,有一块富饶而秀美的土地,人们唤作进香河。相传一日,一缕紫气从天而至,只一瞬间便消失在了进香河中。老人们说,这是玄武神灵将天书藏匿在此。
很多年后,人们终于在进香河地区发现了带有玄武密码的文字。更加神奇的是,这份带有玄武密码的文字,与玄武湖南岸台城的结构有微妙的关联。于是,漫长的破译工作开始了。
经过分析,我们可以用东南西北四个方向来描述台城城砖的摆放,不妨用一个长度为 N 的序列来描述,序列中的元素分别是 E,S,W,N,代表了东南西北四向,我们称之为母串。而神秘的玄武密码是由四象的图案描述而成的 M 段文字。这里的四象,分别是东之青龙,西之白虎,南之朱雀,北之玄武,对东南西北四向相对应。
现在,考古工作者遇到了一个难题。对于每一段文字,其前缀在母串上的最大匹配长度是多少呢?
输入格式
第一行有两个整数,N 和 M,分别表示母串的长度和文字段的个数;
第二行是一个长度为 N 的字符串,所有字符都满足是 E,S,W 和 N 中的一个;
之后 M行,每行有一个字符串,描述了一段带有玄武密码的文字。依然满足,所有字符都满足是 E,S,W 和 N 中的一个。
输出格式
输出有 M 行,对应 M 段文字。
每一行输出一个数,表示这一段文字的前缀与母串的最大匹配串长度。
样例
输入
7 3
SNNSSNS
NNSS
NNN
WSEE
输出
4
2
0
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
const int M=1e5+100;
const int N=1e7+10;
queue<int>q;
char a[N];
char s[N][101];
int ch[N][20],bo[N],nx[N];
int tot=1;
int ff(char ch)
{
if(ch=='E')
return 0;
if(ch=='S')
return 1;
if(ch=='W')
return 2;
return 3;
}
void inserts(char b[])
{
int u=1;
int l=strlen(b);
for(int i=0;i<l;i++)
{
int c=ff(b[i]);
if(!ch[u][c])
ch[u][c]=++tot;
u=ch[u][c];
}
bo[u]++;
}
void bfs()
{
for(int i=0;i<4;i++)
{
int v=ch[1][i];
if(v)
{
nx[v]=1;
q.push(v);
}
else
ch[1][i]=1;
}
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=0;i<4;i++)
{
int v=ch[u][i];
if(!v)
ch[u][i]=ch[nx[u]][i];
else
{
q.push(v);
nx[v]=ch[nx[u]][i];
}
}
}
}
void find1()
{
int u=1;
int l=strlen(a);
for(int i=0;i<l;i++)
{
int v=ff(a[i]);
u=ch[u][v];
for(int j=u;j!=-1&&bo[j]!=-1;j=nx[j])
bo[j]=-1;
}
}
int find2(char c[])
{
int l=strlen(c);
int u=1;
int k=0,i=0,sum=0;
while(i<l)
{
int v=ff(c[i]);
u=ch[u][v];
k++;
i++;
if(bo[u]==-1)
sum=k;
}
return sum;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
scanf("%s",a);
for(int i=0;i<m;i++)
{
scanf("%s",s[i]);
inserts(s[i]);
}
bfs();
find1();
for(int i=0;i<m;i++)
{
printf("%d\n",find2(s[i]));
}
return 0;
}