AI模型训练所需的数学知识
为了搞好AI模型训练,以下是一些核心的数学知识:
1. 线性代数
- 矩阵运算:矩阵乘法、转置、逆等。
- 特征值与特征向量:用于主成分分析(PCA)、奇异值分解(SVD)等。
- 向量空间:向量的线性组合、正交性、基等。
2. 微积分
- 导数与偏导数:用于梯度下降法中的梯度计算。
- 链式法则:反向传播算法的基础。
- 优化算法:如牛顿法、拟牛顿法等。
3. 概率与统计
- 概率分布:正态分布、伯努利分布、泊松分布等。
- 期望与方差:用于理解数据分布和模型评估。
- 贝叶斯理论:贝叶斯分类器、贝叶斯网络等。
4. 优化理论
- 凸优化:理解凸集、凸函数的性质。
- 梯度下降:了解各种优化算法如SGD、Adam、RMSprop等。
5. 离散数学
- 图论:用于图神经网络(GNN)等领域。
- 组合数学:用于理解模型的复杂度和选择。
6. 信息论
- 熵与交叉熵:用于模型的损失函数设计,特别是分类问题。