AI基础 -- 数学基础目录

AI模型训练所需的数学知识

为了搞好AI模型训练,以下是一些核心的数学知识:

1. 线性代数

  • 矩阵运算:矩阵乘法、转置、逆等。
  • 特征值与特征向量:用于主成分分析(PCA)、奇异值分解(SVD)等。
  • 向量空间:向量的线性组合、正交性、基等。

2. 微积分

  • 导数与偏导数:用于梯度下降法中的梯度计算。
  • 链式法则:反向传播算法的基础。
  • 优化算法:如牛顿法、拟牛顿法等。

3. 概率与统计

  • 概率分布:正态分布、伯努利分布、泊松分布等。
  • 期望与方差:用于理解数据分布和模型评估。
  • 贝叶斯理论:贝叶斯分类器、贝叶斯网络等。

4. 优化理论

  • 凸优化:理解凸集、凸函数的性质。
  • 梯度下降:了解各种优化算法如SGD、Adam、RMSprop等。

5. 离散数学

  • 图论:用于图神经网络(GNN)等领域。
  • 组合数学:用于理解模型的复杂度和选择。

6. 信息论

  • 熵与交叉熵:用于模型的损失函数设计,特别是分类问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值