数学基础 -- 微积分之函数求导的常数倍法则

函数求导之常数倍法则

在求导过程中,如果一个函数前面有一个常数倍,可以使用常数倍法则来简化计算。本文将详细讲解如何使用常数倍法则,并通过具体例子说明其应用。

常数倍法则

常数倍法则
给定一个函数 f ( x ) f(x) f(x) 和一个常数 c c c,则函数 c f ( x ) cf(x) cf(x) 的导数是:

d d x [ c f ( x ) ] = c ⋅ d d x [ f ( x ) ] \frac{d}{dx}[cf(x)] = c \cdot \frac{d}{dx}[f(x)] dxd[cf(x)]=cdxd[f(x)]

这意味着在求导时,我们可以先将常数提取出来,然后只对函数部分进行求导,最后再将结果与常数相乘。

具体示例

示例 1:二次函数求导

对于函数 f ( x ) = 3 x 2 f(x) = 3x^2 f(x)=3x2,其导数可以按照以下步骤计算:

d d x [ 3 x 2 ] = 3 ⋅ d d x [ x 2 ] \frac{d}{dx}[3x^2] = 3 \cdot \frac{d}{dx}[x^2] dxd[3x2]=3dxd[x2]

首先,求 x 2 x^2 x2 的导数:

d d x [ x 2 ] = 2 x \frac{d}{dx}[x^2] = 2x dxd[x2]=2x

然后,将常数 3 与导数结果相乘:

3 ⋅ 2 x = 6 x 3 \cdot 2x = 6x 32x=6x

所以, 3 x 2 3x^2 3x2 的导数为 6 x 6x 6x

示例 2:三角函数求导

对于函数 f ( x ) = 5 sin ⁡ ( x ) f(x) = 5\sin(x) f(x)=5sin(x),其导数计算步骤如下:

d d x [ 5 sin ⁡ ( x ) ] = 5 ⋅ d d x [ sin ⁡ ( x ) ] \frac{d}{dx}[5\sin(x)] = 5 \cdot \frac{d}{dx}[\sin(x)] dxd[5sin(x)]=5dxd[sin(x)]

首先,求 sin ⁡ ( x ) \sin(x) sin(x) 的导数:

d d x [ sin ⁡ ( x ) ] = cos ⁡ ( x ) \frac{d}{dx}[\sin(x)] = \cos(x) dxd[sin(x)]=cos(x)

然后,将常数 5 与导数结果相乘:

5 ⋅ cos ⁡ ( x ) = 5 cos ⁡ ( x ) 5 \cdot \cos(x) = 5\cos(x) 5cos(x)=5cos(x)

所以, 5 sin ⁡ ( x ) 5\sin(x) 5sin(x) 的导数为 5 cos ⁡ ( x ) 5\cos(x) 5cos(x)

更好的求导步骤

  1. 识别常数倍:首先识别出函数前面的常数倍。
  2. 导数计算:只对函数部分进行求导。
  3. 结果相乘:将求导结果与常数相乘。

总结

使用常数倍法则可以简化求导过程,减少出错几率,并提高计算效率。掌握此法则后,复杂函数的求导也可以变得更加简单直观。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值