组合杂题选讲 #2

问题描述

题意:如果有 \(n\) 种不同颜色,每种颜色各 \(m\) 个球,每次以均等概率随机取出一个(取出之后不放回去),则期望上取出多少个球后可以取完某种颜色的球?

提示:容易发现相同颜色的球是否视为一样对答案没有影响。

随机试验中某个变量的数学期望(简称“期望”)是指该变量所有可能的结果的概率乘以其结果的总和。例如一个理想情况下的骰子的点数的数学期望由

\[\frac16\times1+\frac16\times2+\frac16\times3+\frac16\times4+\frac16\times5+\frac16\times6=\frac72 \]

给出。而投掷两个理想情况下的骰子得到的点数之和的期望由

\[\frac{1}{36}\times2+\frac{2}{36}\times3+\frac{3}{36}\times4+\frac{4}{36}\times5+\frac{5}{36}\times6+\frac{6}{36}\times7+\frac{5}{36}\times8+\frac{4}{36}\times9+\frac{3}{36}\times10+\frac{2}{36}\times11+\frac{1}{36}\times12=7 \]

给出。

举个例子,若 \(n=2,m=3\) 则原问题的合法取球方案共 \(20\) 种,分别如下(用 ab 代表两种颜色的球):

aaa bbb
aaba abaa abbb baaa babb bbab
aabba aabbb ababa ababb abbaa abbab baaba baabb babaa babab bbaaa bbaab

其中取出 \(3\) 个球后可以取完某种颜色的球的方案 \(2\) 种,取出 \(4\) 个球的方案 \(6\) 种,取出 \(5\) 个球的方案 \(12\) 种,故 \(n=2,m=3\) 时原问题的答案为

\[\frac2{20}\times3+\frac6{20}\times4+\frac{12}{20}\times5=\frac92 \]

解答

我们用记号 \(\mathbf E(a)\) 表示随机试验中变量 \(a\) 的数学期望。已经取出的球的数量简称为时刻,例如“取出某种颜色全部球的时刻”的意思是“取出某种颜色全部球时已经取出的球的数量”。

我们考虑给同种颜色的球编上 \(1\)\(n\) 的编号,这样这 \(nm\) 个球各不相同,显然是否编号这对答案没有影响。按某种顺序取出这 \(nm\) 个球,有 \((nm)!\) 种取法。

考虑把操作序列翻转过来,则原问题可以转化为第一次取出每种颜色的球至少一个的时刻。举个例子,若 \(n=2,m=3\),两种颜色记作 rb,考虑下面操作序列

rbrrbb
---^--

在第 \(4\) 次操作时 r 这种颜色被全部取出了,若把操作序列翻转

bbrrbr
--^---

在第 \(3\) 次操作时全部颜色的球都被取出了至少一次,可以看到还是刚才的那个 r(由于翻转位置发生了改变,具体而言位置 \(p\) 会变到 \(nm+1-p\))。

\(S\) 表示每种颜色首次出现的时刻的可重集合,现在就是要求 \(\mathbf E(\max S)\) 的值。根据容斥原理(min-max容斥),有

\[\mathbf E(\max S)=\sum_{T\subseteq S,T\neq \varnothing}(-1)^{|T|-1}\mathbf E(\min T) \]

考虑 \(\mathbf E(\min T)\) 的组合意义,即首次出现 \(T\) 集合中的任意一种颜色的球的时刻,枚举这个时刻,得到

\[\mathbf E(\min T)=\sum_{t\geq 0}\frac{\binom{(n-|T|)m}{t}t!}{\binom{nm}{t}t!}(t+1)\frac{|T|m}{nm-t} \]

发现这个值只与 \(T\) 集合的大小有关而与 \(T\) 中具体包含的元素无关,考虑记

\[f(k)=\sum_{t\geq 0}\frac{\binom{(n-k)m}{t}t!}{\binom{nm}{t}t!}(t+1)\frac{km}{nm-t} \]

那么,

\[\mathbf E(\max S)=\sum_{T\subseteq S,T\neq \varnothing}(-1)^{|T|-1}f(|T|) \]

首先我们专注于解出 \(f(k)\) 的简化形式,展开二项式系数并通分,得到 \(f(k)=\sum_{t\geq0}w_t\),其中

\[w_t=\frac{((n-k)m)!(nm-t)!}{((n-k)m-t)!(nm)!}(t+1)\frac{km}{nm-t} \]

,其相邻两项的比值由

\[\begin{aligned}\frac{w_{t+1}}{w_t}&=\frac{(t+2) (m n-t) (m n-t-1)! (m (n-k)-t)!}{(t+1) (m n-t-1) (m n-t)! (m (n-k)-t-1)!}\\&=\frac{(t+2)(t+km-nm)}{(t+1-nm)(t+1)}\end{aligned} \]

给出,是关于 \(t\) 的有理函数,因此可以将原式写作超几何函数的形式,得到

\[\begin{aligned}f(k)&=w_0\mathrm F\left(\begin{gathered}2,km-nm\\1-nm\end{gathered}\middle\vert1\right)\\&=\dfrac kn\mathrm F\left(\begin{gathered}2,km-nm\\1-nm\end{gathered}\middle\vert1\right)\end{aligned} \]

由组合意义可知,一定有 \(km-nm\leq0\),因此可以应用范德蒙德卷积恒等式,得到

\[\begin{aligned}f(k)&=\frac kn\frac{\Gamma(-1-km)\Gamma(1-nm)}{\Gamma(-1-nm)\Gamma(1-km)}\\&=\frac{m n+1}{k m+1}\end{aligned} \]

代回原来的式子,

\[\begin{aligned}\mathbf E(\max S)&=\sum_{T\subseteq S,T\neq \varnothing}(-1)^{|T|-1}\frac{m n+1}{k m+1}\\&=\sum_{k=1}^{n}(-1)^{k-1}\frac{m n+1}{k m+1}\binom nk\end{aligned} \]

再次利用超几何函数,可以解出

\[\mathbf E(\max S)=m n+1-\frac{\left(1/m-1\right)!n!}{ \left(n+1/m-1\right)!} \]

考虑到这是翻转过后的时刻,转化为原来问题,最终答案是 \(\left(1/m-1\right)!n!/ \left(n+1/m-1\right)!\)

2022年12月8日 于东莞松山湖

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值