题目描述
某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
输入输出格式
输入格式:
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0 0
输出格式:
输出最大的快乐指数。
输入输出样例
输入样例#1:
7 1 1 1 1 1 1 1 1 3 2 3 6 4 7 4 4 5 3 5 0 0
输出样例#1:
5
也是一道树形DP,f[x][0/1]表示第x个人不选或选所能带来的最大快乐值,dfs,当这个人选时,快乐值加上他的下属不选的快乐值,当这个不选时,快乐值加上他的下属选或不选的较大值。
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
const int MAXN=6010;
struct edge
{
int next,to,val;
};
edge e[MAXN*3];
int head[MAXN],cnt;
void addedge(int u,int v)
{
e[++cnt].next=head[u];
e[cnt].to=v;
head[u]=cnt;
}
int f[MAXN][2],r[MAXN];
bool visit[MAXN];
void dfs(int x)
{
visit[x]=1;
for (int i=head[x];i;i=e[i].next)
{
int v=e[i].to;
if (!visit[v])
{
dfs(v);
f[x][1]+=f[v][0];
f[x][0]+=max(f[v][0],f[v][1]);
}
}
f[x][1]+=r[x];
}
int main()
{
int n;
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&r[i]);
}
for (int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
int pp,ppp;
cin>>pp>>ppp;
dfs(1);
int ans=0;
for (int i=1;i<=n;i++)
{
ans=max(f[i][1],max(f[i][0],ans));
}
cout<<ans;
return 0;
}