不定方程

对于不定整数方程pa+qb=c,若 c mod gcd(p, q) = 0,则该方程存在整数解,否则不存在整数解。
上面已经列出找一个整数解的方法,在找到p*a + q*b = gcd(p, q)的一组解p0,q0后,将p*a + q*b = gcd(p, q)的每个解乘上 c/gcd(p, q) 即可。
p*a + q*b = c的其他整数解满足:
p = p1 + b/gcd(a, b) * t
q = q1 - a/gcd(a, b) * t
p、q就是p*a + q*b = c的所有整数解。

### 使用 MATLAB 不定方程问题 在 MATLAB 中,`solve` 函数可用于求符号表达式的方程。对于不定方程,即存在多个可能的情况,可以通过 `solve` 来获取这些。 #### 定义变量并设置方程 为了展示如何操作,考虑如下形式的不定方程: \[ \frac{1.4}{\sqrt{(1.5)^2-(1.4)^2}}=\cos(b)\cdot d\cdot\cos(a)/(2\cdot 1.5+d\cdot\sin(a)) \] 此方程涉及角度 \(a\) 和 \(b\) 的三角函数以及参数 \(d\) 。通过定义符号变量和调用 `solve` ,可以尝试找到满足该条件的一组或多组[^4]。 ```matlab syms a b d % 定义符号变量 eqn = (1.4/sqrt((1.5)^2-(1.4)^2))==cos(b)*d*cos(a)/(2*1.5+d*sin(a)); % 设置等式 sol = solve(eqn,b); % 对于未知量 'b' 进行求 disp(sol); ``` 上述代码片段展示了基本流程:先声明必要的符号变量;接着构建代表目标方程的对象;最后执行 `solve()` 方法得到结果,并显示出来。需要注意的是,当面对更复杂的情形时,可能会获得含有其他未定参量的结果集,此时可以根据具体需求进一步简化或指定额外约束条件来缩小范围。 对于具有多重根或是自由度较高的情况,MATLAB 提供了多种手段用于探索所有潜在答路径,比如利用矩阵运算特性处理线性系统下的情形[^2]。然而,在某些特殊情况下,特别是涉及到超越方程的时候,析方法未必总能给出封闭形式的答案,则需借助数值计算技术近似估计可行区间内的零点位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值