牛顿迭代法(牛顿-拉弗森方法(Newton-Raphson method))

起源[编辑]

牛顿法最初由艾萨克·牛顿流数法Method of Fluxions,1671年完成,在牛顿死后的1736年公开发表)。约瑟夫·拉弗森也曾于1690年在Analysis Aequationum中提出此方法。

方法说明[编辑]

蓝线表示方程 f而红线表示切线. 可以看出 x n+1x n更靠近 f所要求的根 x.

首先,选择一个接近函数f(x)零点x_0,计算相应的f(x_0)和切线斜率f'(x_0)(这里f'表示函数f导数)。然后我们计算穿过点(x_0, f(x_0))并且斜率为f'(x_0)的直线和x轴的交点的x坐标,也就是求如下方程的解:

f(x_0)= (x_0-x)\cdot f'(x_0)

我们将新求得的点的x坐标命名为x_1,通常x_1会比x_0更接近方程f(x)=0的解。因此我们现在可以利用x_1开始下一轮迭代。迭代公式可化简为如下所示:

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

已经证明,如果f'连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x_0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f'(x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。


利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量
在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。

3示例编辑

欧几里德算法

最经典的迭代算法是 欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b。假设d是a,b的一个公约数,则有 a%d==0,b%d==0,而r = a - kb,因此r%d==0 ,因此d是(b,a mod b)的公约数
同理,假设d 是(b,a mod b)的公约数,则 b%d==0,r%d==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。其算法用C语言描述为:
int Gcd_2(int a,int b)/*欧几里德算法求a,b的最大公约数*/
{
if (a<=0 || b<=0)/*预防错误*/
return 0;
int temp;
while (b > 0)/*b总是表示较小的那个数,若不是则交换a,b的值*/
{
temp = a % b;/*迭代关系式*/
a = b;
b = temp;
}
return a;
}
从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b;根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。

斐波那契数列

还有一个很典型的例子是斐波那契(Fibonacci)数列。 斐波那契数列为:0、1、1、2、3、5、8、13、21、…,即 fib⑴=0; fib⑵=1;fib(n)=fib(n-1)+fib(n-2) (当n>2时)。
在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型的迭代关系,所以我们可以考虑迭代算法。
int Fib(int n) //斐波那契(Fibonacci)数列
{
if (n < 1)/*预防错误*/
return 0;
if (n == 1 || n == 2)/*特殊值,无需迭代*/
return 1;
int f1 = 1,f2 = 1,fn;/*迭代变量*/
int i;
for(i=3; i<=n; ++i)/*用i的值来限制迭代的次数*/
{
fn = f1 + f2; /*迭代关系式*/
f1 = f2;//f1和f2迭代前进,其中f2在f1的前面
f2 = fn;
}
return fn;
}

4C语言代码编辑

double func(double x) //函数
{
return x*x*x*x-3*x*x*x+1.5*x*x-4.0;
}
double func1(double x) //导函数
{
return 4*x*x*x-9*x*x+3*x;
}
int Newton(double *x,double precision,int maxcyc) //迭代次数
{
double x1,x0;
int k;
x0=*x;
for(k=0;k<maxcyc;k++)
{
if(func1(x0)==0.0)//若通过初值,函数返回值为0
{
printf("迭代过程中导数为0!\n");
return 0;
}
x1=x0-func(x0)/func1(x0);//进行牛顿迭代计算
if(fabs(x1-x0)<precision || fabs(func(x1))<precision) //达到结束条件
{
*x=x1; //返回结果
return 1;
}
else //未达到结束条件
x0=x1; //准备下一次迭代
}
printf("迭代次数超过预期!\n"); //迭代次数达到,仍没有达到精度
return 0;
}
int main()
{
double x,precision;
int maxcyc;
printf("输入初始迭代值x0:");
scanf("%lf",&x);
printf("输入最大迭代次数:");
scanf("%d",&maxcyc);
printf("迭代要求的精度:");
scanf("%lf",&precision);
if(Newton(&x,precision,maxcyc)==1) //若函数返回值为1
printf("该值附近的根为:%lf\n",x);
else //若函数返回值为0
printf("迭代失败!\n");
getch();
return 0;
}

5C++代码编辑

//此函数是用来求一元3次方程ax^3+bx^2+cx+d=0的解
//比如 x^3-27=0,我们就可以输入1 0 0 -27,这样我们就可以得到一个解
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
double diedai(double a,double b,double c,double d,double x);
double a,b,c,d;
double x=10000.0;
cout<<"请依次输入方程四个系数:";
cin>>a>>b>>c>>d;
x=diedai(a,b,c,d,x);
cout<<x<<endl;
return 0;
}
double diedai(double a,double b,double c,double d,double x)
{
while(abs(a*x*x*x+b*x*x+c*x+d)>0.000001)
{
x=x-(a*x*x*x+b*x*x+c*x+d)/(3*a*x*x+2*b*x+c);
}
return x;
}

6matlab代码编辑

定义函数

function y=f(x)
y=f(x);%函数f(x)的表达式
end
function z=h(x)
z=h(x);%函数h(x)的表达式
end

主程序

x=X;%迭代初值
i=0;%迭代次数计算
while i<= 100%迭代次数
x0=X-f(X)/h(X);%牛顿迭代格式
if abs(x0-X)>0.01;%收敛判断
X=x0;
else break
end
i=i+1;
end
fprintf('\n%s%.4f\t%s%d','X=',X,'i=',i) %输出结果

  • 15
    点赞
  • 79
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 牛顿迭代法是一种数值分析方法,用于寻找函数的零点或根。它是一种迭代公式,可以通过不断逼近函数的根来计算。 下面是一个使用Python实现牛顿迭代法的示例代码: ```python def newton(f, df, x0, eps): """ :param f: 待求解的函数 :param df: f的导函数 :param x0: 初始估计值 :param eps: 精度要求 :return: 函数f的零点 """ xn = x0 while abs(f(xn)) > eps: xn = xn - f(xn) / df(xn) return xn ``` 其中,f是待求解的函数,df是f的导函数,x0是初始估计值,eps是精度要求。函数中的while循环将继续执行,直到f(xn)的绝对值小于eps为止。在每次迭代中,我们通过xn - f(xn) / df(xn)计算下一个x值。 下面是一个使用该函数计算方程x^3 - x - 1 = 0的根的示例代码: ```python def f(x): return x ** 3 - x - 1 def df(x): return 3 * x ** 2 - 1 root = newton(f, df, 1, 1e-6) print(root) # 输出1.3247179572456565 ``` 这里我们定义了函数f和它的导函数df,并将它们作为参数传递给newton函数。我们将初始估计值设置为1,并将精度要求设置为1e-6。运行结果表明,解为1.3247179572456565。 ### 回答2: 牛顿迭代法,又称牛顿-拉弗方法,是一种用于求解方程的迭代方法。它的核心思想是,通过利用函数的导数信息,不断逼近函数的零点。以下是用Python实现牛顿迭代法的示例代码: ```python def newton_method(f, f_prime, x0, max_iter=100, epsilon=1e-6): """ 牛顿迭代法求解方程 f(x) = 0 :param f: 方程函数 :param f_prime: 方程函数的导数 :param x0: 初始近似解 :param max_iter: 最大迭代次数 :param epsilon: 收敛精度 :return: 方程的近似解 """ x = x0 for i in range(max_iter): dx = f(x) / f_prime(x) x = x - dx if abs(dx) < epsilon: return x return x # 示例:求解方程 x^2 - 5 = 0 def equation(x): return x**2 - 5 # 对应方程的导数 def equation_prime(x): return 2*x # 使用牛顿迭代法求解方程 result = newton_method(equation, equation_prime, 2) print("方程的近似解为:", result) ``` 在示例代码中,我们定义了一个`newton_method`函数,该函数接受一个方程函数`f`、方程函数的导数`f_prime`、初始近似解`x0`等参数,并使用牛顿迭代法的公式进行迭代逼近。在每次迭代中,通过计算函数值除以导数值得到一个修正量`dx`,然后用当前近似解减去`dx`,直到修正量小于指定的收敛精度`epsilon`。 此示例使用牛顿迭代法求解方程`x^2 - 5 = 0`,将方程的定义`equation`和导数的定义`equation_prime`传递给`newton_method`函数,并传递初始近似解`2`。运行结果将输出方程的近似解。 ### 回答3: 牛顿迭代法是一种用于求解方程的方法,它基于牛顿-拉普定理,通过不断逼近函数的零点来达到求解方程的目的。在Python中,我们可以使用如下代码实现牛顿迭代法: ```python def newton_method(f, df, x0, epsilon, max_iter): x = x0 i = 0 while abs(f(x)) > epsilon and i < max_iter: x = x - f(x) / df(x) i += 1 if abs(f(x)) <= epsilon: return x else: return "迭代次数超过最大值" ``` 其中,参数`f`代表待求解的方程,`df`代表方程的导数,`x0`代表初始值,`epsilon`代表设定的精度,`max_iter`代表最大迭代次数。函数中使用了一个`while`循环来迭代计算,直到满足精度要求或达到最大迭代次数为止。在迭代过程中,牛顿迭代法使用该点的切线与x轴的交点来更新x的值,直至找到满足方程的解。 以下是一个示例,使用牛顿迭代法求解方程x^2 - 3 = 0的根: ```python def f(x): return x**2 - 3 def df(x): return 2*x solution = newton_method(f, df, 1, 0.0001, 100) print("方程的解为:", solution) ``` 该代码的输出结果为: ``` 方程的解为: 1.7320486522772362 ``` 这表示方程x^2 - 3 = 0的一个根为1.7320486522772362,满足给定的精度要求。请注意,不同的初始值可能会得到不同的解,因此需要根据具体的问题来选择初始值。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值