常用数据结构与算法—数组

本文介绍了二分查找算法在有序数组中的应用,以及如何通过定义不同的区间(左闭右开/闭)进行搜索。此外,还讨论了移除元素的两种方法:暴力解法和双指针优化,以及解决长度最小子数组问题的暴力解法和滑动窗口技巧。最后,展示了如何生成螺旋矩阵。
摘要由CSDN通过智能技术生成

二分查找(#704)

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1

定义左闭右开区间

// 版本二
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { //因为left==right的时候,在[left, right)是无效的空间,所以使用<
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target) {
                right = middle; // target 在左区间,在[left, middle)中
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,在[middle + 1, right)中
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};

定义左闭右闭区间

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};

移除元素(#27)

给你一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

暴力解法

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int size = nums.size();
        for (int i = 0; i < size; i++) {
            if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位
                for (int j = i + 1; j < size; j++) {
                    nums[j - 1] = nums[j];
                }
                i--; // 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
                size--; // 此时数组的大小-1
            }
        }
        return size;
    }
};

双指针法

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
            if (val != nums[fastIndex]) {
                nums[slowIndex++] = nums[fastIndex];
            }
        }
        return slowIndex;
    }
};

长度最小的子数组(#209)

给定一个含有 n 个正整数的数组和一个正整数 target

找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度**。**如果不存在符合条件的子数组,返回 0

暴力解法

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int size=nums.size();
        int result=size+1;
        int sum=0;
        int length=0;
        for(int i=0;i<size;i++)
        {
            sum=0;
            for(int j=i;j<size;j++)
            {
                sum=sum+nums[j];
                if(sum>=target)
                {
                    length=j-i+1;
                    if(result>length)
                        result=length;
                    break;
                }
            }
        }
        if(result==size+1)
            return 0;
        else
            return result;
    }
};

滑动窗口

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int result=INT32_MAX;
        int sum=0;
        int i=0;
        int length=0;
            for(int j=0;j<nums.size();j++)
            {
                sum=sum+nums[j];
                while(sum>=target)
                {
                    length=j-i+1;
                    result=result<length?result:length;
                    sum=sum-nums[i];
                    i++;
                }
            }
        return result==INT32_MAX?0:result;
    }
};

螺旋矩阵(#59)

给你一个正整数 n ,生成一个包含 1n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 res 。

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> res(n, vector<int>(n));
        int startx=0,starty=0;
        int loop=n/2;
        int mid=n/2;
        int count=1;
        int offset=1;
        int i,j;

        while(loop--)
        {
            i=startx;
            j=starty;

            for(j=starty;j<starty+n-offset;j++)
            {
                res[startx][j]=count++;
            }
            for(i=startx;i<startx+n-offset;i++)
            {
                res[i][starty+n-offset]=count++;
            }
            for(j=starty+n-offset;j>starty;j--)
            {
                res[startx+n-offset][j]=count++;
            }
            for(i=startx+n-offset;i>startx;i--)
            {
                res[i][starty]=count++;
            }
            startx++;
            starty++;
            offset=offset+2;
        }
        if(n%2!=0)
        {
            res[mid][mid]=n*n;
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值