机器学习之不同算法对iris,boston数据集进行建模分析

本文分别使用一元和多元线性回归对鸢尾花数据集的petal_length和petal_width进行分析,探讨两者之间的关系。接着,对boston房价数据集应用多元线性回归,评估模型在训练集和测试集上的表现。此外,通过KMeans算法对iris数据集进行聚类,计算相关评价指标。最后,用支持向量机(SVM)对iris数据集进行分类,展示模型在三分类任务上的性能。
摘要由CSDN通过智能技术生成

1.一元线性回归

对鸢尾花数据集中petal_length和petal_width两列数据进行一元线性回归分析。对上述两列数据进行预处理并进行回归分析,画出散点图和回归线。打印回归方程的截距和斜率。根据回归模型,给定花萼长度为4.0的花,预测其花萼宽度

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris 
from sklearn.linear_model import LinearRegression

iris = load_iris()

data = pd.DataFrame(iris.data)
data.columns = ["sepal_length","sepal_width","petal_length","petal_width"]


x = data["petal_length"].values
y = data["petal_width"].values
x = x.reshape(len(x),1)
y = y.reshape(len(y),1)
lmodel = LinearRegression()
lmodel.fit(x,y)
plt.scatter(x,y)
pre_y = lmodel.predict(x)
plt.plot(x,pre_y,'r-',linewidth=2)

print("截距:",lmodel.intercept_)
print("斜率:",lmodel.coef_)

print("predict petal_length=4.0:",lmodel.predict([[4.0]]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值