自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 概率论与统计学基础 | 随机变量和概率分布

概率是描述随机现象发生可能性的数学工具。有多种定义方式,其中一种常见的是频率定义和古典定义。概率是在重复相同随机试验的情况下,事件发生的相对频率。随着试验次数的增加,频率趋向于一个稳定的值。如果每个样本点发生的机会相同且总体是有限的,概率可以通过样本点数目除以总体样本点数目得到。概率的性质:对于任意事件 A,其概率值 P(A) 非负,即 P(A) ≥ 0。整个样本空间的概率为 1,即 P(Ω) = 1,其中 Ω 表示样本空间。

2024-01-20 19:44:19 1041

原创 特征值和特征向量的解析解法--步骤

这里,x是一个n维列向量。特征值和特征向量的解析解法通过数学推导和计算,可以得到精确的特征值和特征向量。首先,我们需要求解特征值方程det(A-λI) = 0,其中A是矩阵,λ是特征值,I是单位矩阵。综上所述,矩阵A的特征值为λ₁ = 1,λ₂ = 3,对应的特征向量为v₁ = [-1/√2, 1/√2],v₂ = [1/√2, 1/√2]。对于特征值λ₁ = 1,归一化得到特征向量v₁ = [-1/√2, 1/√2];对于特征值λ₂ = 3,归一化得到特征向量v₂ = [1/√2, 1/√2]。

2023-05-25 00:40:23 2441

原创 特征值和特征向量的解析解法--带有重复特征值的矩阵

对于代数重数大于1的特征值,我们需要进一步寻找额外的线性无关特征向量,可以利用线性方程组解空间的性质或特征向量的正交性质来构造这些特征向量。a. 利用线性方程组(A-λI)x = 0的解空间的性质,构造线性无关的特征向量。考虑一个n×n的矩阵A,假设它有一个重复的特征值λ,即λ是特征值方程det(A-λI) = 0的多重根。当一个矩阵具有重复的特征值时,意味着存在多个线性无关的特征向量对应于相同的特征值。首先,我们计算特征值λ的代数重数,它表示特征值λ在特征值方程中出现的次数。

2023-05-25 00:35:44 2108

原创 特征值和特征向量的解析解法--正交矩阵

算矩阵A的特征值和特征向量。通过正交相似变换,我们可以将矩阵对角化,并获得特征值和特征向量的解析解,从而在各个领域中推动问题的求解和应用的发展。对于一个对称矩阵A,如果存在一个正交矩阵Q,使得Q^TAQ是一个对角矩阵D,那么D的对角线上的元素就是A的特征值,而Q的列向量就是A的特征向量。其中,Q是A的特征向量组成的正交矩阵,D是由A的特征值组成的对角矩阵。列向量是正交的:正交矩阵的每一列向量都是正交的,即任意两列向量的内积为0。行向量是正交的:正交矩阵的每一行向量也是正交的,即任意两行向量的内积为0。

2023-05-25 00:32:44 2605

原创 特征值和特征向量的解析解法--对称矩阵

通过对对称矩阵进行对角化,我们可以更好地理解和利用矩阵的特征信息,从而在各个领域中推动问题的求解和应用的发展。对称矩阵的特征向量是正交的:对于对称矩阵A,对应于不同特征值的特征向量是正交的。具体而言,如果v₁和v₂是对称矩阵A的特征值λ₁和λ₂对应的特征向量,那么v₁·v₂=0,其中·表示向量的点积。首先,我们回顾一下对称矩阵的定义。其中,Q是由A的特征向量组成的正交矩阵,D是由A的特征值组成的对角矩阵。这样的对角化操作使得特征值和特征向量的计算更加方便,同时也提供了一种将矩阵A转化为对角矩阵的方法。

2023-05-25 00:28:45 1514

原创 特征值和特征向量的解析解法--对角矩阵

通过对矩阵进行对角化,我们可以简化特征值和特征向量的计算,并获得精确的解析解。对于一个n×n的矩阵A,如果存在一个非零向量v,使得满足Av=λv,其中λ是一个标量,那么λ称为A的特征值,v称为对应于特征值λ的特征向量。对角矩阵在特征值和特征向量的计算中起着重要作用,因为它们可以帮助我们简化问题,将复杂的线性变换转化为更简单的形式。从上述等式可以看出,当A可以对角化时,我们可以通过求解矩阵V和Λ来得到矩阵A的特征值和特征向量。当矩阵A可以对角化时,我们可以通过计算特征向量矩阵V的逆矩阵V⁻¹来得到特征值。

2023-05-25 00:22:36 1871 1

原创 线性代数基础 | 特征值和特征向量

特征值(eigenvalue)是线性代数中一个重要的概念,用于描述线性变换对于某个向量的伸缩效应。在本文中,我们将深入讨论特征值的定义和性质。首先,我们考虑一个线性变换(或者说一个方阵)A。对于一个非零向量v,如果它满足以下条件:Av = λv其中λ是一个标量,称为特征值,v称为对应于特征值λ的特征向量。特征向量表示了在线性变换下只发生伸缩而不发生方向变化的向量。特征值则表示了这种伸缩的比例。特征值的存在性:对于n阶方阵A,它至少有一个特征值。

2023-05-25 00:19:57 7483 1

原创 线性代数基础 | 线性方程组和矩阵求逆

线性方程组是由一组线性方程组成的方程组,每个方程都是形如a1x1a2x2⋯anxnba1​x1​a2​x2​⋯an​xn​b的线性方程,其中x1x2⋯xnx1​x2​⋯xn​是未知量,a1a2⋯ana1​a2​⋯an​和bbb是已知量。线性方程组是一种重要的数学工具,在科学、工程、经济等领域有着广泛的应用。

2023-05-14 01:11:02 609

原创 侠义相对论的详细推导过程

根据狭义相对论,质量和能量也是相对的。根据洛伦兹变换,我们可以看到,时间和空间的坐标在不同的惯性参考系中是相互转换的。这就导致了时间和空间的相对性:不同的观察者可能会测量到不同的时间和空间间隔,取决于他们所处的惯性参考系。例如,对于一个运动的物体,它的长度和时间间隔会因为不同的惯性参考系而有所不同。设在S参考系中,某个事件的时间和空间坐标为(t,x,y,z),在S’参考系中,同一个事件的时间和空间坐标为(t’,x’,y’,z’)。其中,s是时空间隔,Δt是时间间隔,Δx、Δy和Δz是空间间隔,c是光速。

2023-05-11 23:03:25 598

原创 线性代数基础 | 向量空间和线性变换

加法结合律:对于任意的u, v, w∈V,有(u+v)+w=u+(v+w)。加法交换律:对于任意的u, v∈V,有u+v=v+u。加法单位元素:存在一个元素0∈V,对于任意的u∈V,有u+0=u。加法逆元素:对于任意的u∈V,存在一个元素-u∈V,使得u+(-u)=0。标量乘法结合律:对于任意的a, b∈R和u∈V,有a(bu)=(ab)u。向量乘法分配律:对于任意的a∈R和u, v∈V,有a(u+v)=au+av。

2023-05-11 22:51:50 558

原创 线性代数基础 | 向量和矩阵的定义与性质

向量是数学中的一个基本概念,它表示在空间中具有大小和方向的量。向量可以用箭头来表示,箭头的长度表示向量的大小(模),箭头的方向表示向量的方向。在坐标系中,向量通常表示为有序数对xy(x,y)xy或有序三元组xyz(x,y,z)xyz,其中xyzx, y, zxyz分别表示向量在xxx轴、yyy轴、zzz轴方向上的大小,也称为向量的分量。向量的长度(模)表示为∣v∣∣v∣,其中vv表示向量。例如,在二维坐标系中,一个向量vv可以表示为xy。

2023-05-07 21:24:51 4897 1

原创 机器学习中的数学--目录

每一章节会深入介绍数学理论与概念,并结合机器学习中的具体应用,帮助读者更好地理解机器学习中的数学知识。第二章:概率论与统计学基础。第一章:线性代数基础。第五章:机器学习算法。

2023-05-07 21:01:54 140 1

原创 深度学习基础 | 机器学习和深度学习的区别

机器学习和深度学习是人工智能领域的两个重要分支,它们通过训练模型来实现自主学习和推断。机器学习是指通过对数据的分析和模式识别来让计算机自主学习和改进算法,以便在未来更好地处理类似的任务。机器学习包括监督学习、无监督学习、半监督学习和强化学习等多种类型。监督学习是指在已有的数据上,通过训练模型来对未知数据进行预测或分类,例如图像识别和语音识别。无监督学习是指在没有标签的数据上,自动学习数据的结构和模式,例如聚类和降维。半监督学习是指同时利用有标签数据和无标签数据来训练模型,可以大幅提高模型的准确率和效率。

2023-05-07 20:58:13 330 1

原创 专题目录,欢迎收藏

欢迎来到本专栏:深度学习。本专栏旨在介绍深度学习的基础知识、模型和应用,以及实践方法和最新发展趋势。作为一种广泛应用于人工智能领域的技术,深度学习已经在图像识别、自然语言处理、语音识别、推荐系统等众多领域得到广泛应用。在本专栏中,您将了解深度学习的基础概念和理论知识,掌握不同类型的深度学习模型的原理和实现方法,并了解深度学习在不同应用领域的具体应用案例。此外,本专栏还将介绍深度学习的实践技巧和最新的研究发展趋势,帮助读者掌握深度学习的最新动态并了解深度学习未来的发展方向。五、深度学习未来发展趋势。

2023-05-07 20:38:52 43 1

原创 梯度下降算法

可以优化大量的机器学习模型,如线性回归、逻辑回归、神经网络等。梯度下降算法是一种通用的优化算法,适用于不同的损失函数。可以自动学习优化参数,不需要手动调整参数。梯度下降算法是一种迭代算法,每次更新都会改进模型的性能,直到收敛。梯度下降算法的收敛速度较慢,需要大量的迭代才能达到最优解。梯度下降算法可能会陷入局部最优解,无法达到全局最优解。对于复杂的损失函数,梯度下降算法可能会陷入梯度消失或梯度爆炸的问题。梯度下降算法对于超参数的选择较为敏感,需要手动调整学习率、动量等参数。

2023-04-24 19:14:58 981 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除